SCHEME OF EXAMINATION

&

SYLLABI

for

Bachelor of Technology Programmes of Studies under the aegis of University School of Information and Communication Technology offered at Affiliated Institutions of the University

(1st Year Common Scheme and Syllabus & Scheme of Studies for higher semesters)

Guru Gobind Singh Indraprastha University Sector 16C, Dwarka, Delhi – 110 078 [INDIA]

www.ipu.ac.in

Programme Outcomes

- 1. *Engineering Knowledge* (PO01): Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. *Problem Analysis* (PO02): Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- 3. *Design/Development of Solutions* (PO03): Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. *Conduct Investigations of Complex Problems* (PO04): Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions for complex problems:
 - a. that cannot be solved by straightforward application of knowledge, theories and techniques applicable to the engineering discipline as against problems given at the end of chapters in a typical text book that can be solved using simple engineering theories and techniques;
 - b. that may not have a unique solution. For example, a design problem can be solved in many ways and lead to multiple possible solutions;
 - c. that require consideration of appropriate constraints / requirements not explicitly given in the problem statement such as cost, power requirement, durability, product life, etc.;
 - d. which need to be defined (modelled) within appropriate mathematical framework; and
 - e. that often require use of modern computational concepts and tools, for example, in the design of an antenna or a DSP filter.
- 5. *Modern Tool Usage* (PO05): Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 6. *The Engineer and Society* (**PO06**): Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. *Environment and Sustainability* (**PO07**): Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. *Ethics* (**PO08**): Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. *Individual and Team Work* (PO09): Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. *Communication* (PO10): Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to

comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

- 11. *Project Management and Finance* (PO11): Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. *Life-long Learning* (PO12): Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

Course / Paper Group Codes:

BS: Basic Science

HS: Humanities, social science, management

ES: Engineering Science

MC: Mandatory courses

PC: Programme Core, that is course / paper offered in the discipline of the programme as a compulsory paper.

PCE: Programme Core Elective, that is elective course / paper offered in the discipline of the programme.

EAE/OAE: Emerging Area Elective offered by institutions or open area electives offered in the institution

Definitions:

Batch: The batch of the student shall mean the year of the first time enrolment of the students in the programme of study in the first semester. Lateral entry students admitted in the 3^{rd} semester / 2^{nd} year shall be designated as students admitted in the previous batch as they are admitted one year later. A student re-admitted in a programme of study in a lower / later batch shall be considered as the student of the original batch for the purpose calculation of duration of study.

Programme of study shall mean Bachelor of Technology.

Major specialization shall mean the discipline in which the student is admitted / upgraded or transferred.

Minor specialization shall mean the specializations earned through the EAE or OAE route subject to fulfilment of requirements specified in the scheme of study for the concerned minor specialization.

Acronyms:

APC: Academic programme committee comprising of all faculty of the school and as defined in the implementation rules.

L: Number of Lecture hours per week

T/P: Number of Tutorial / Practical Hours per week

C: Number of credits assigned to a course / paper

COE: Controller of Examinations of the Examinations Division of the University.

SGPA/CGPA: Semester/Cumulative Grade Point Average.

NUES: No term end examination shall be held. The evaluation shall be conducted as per the scheme of examinations as described in the scheme of study.

FIRST YEAR

Common Scheme and Syllabus for

Bachelor of Technology Programmes of Study under the aegis of University School of Information and Communication Technology offered at Affiliated Institutions of the University

		First Semester			
Group	Code	Paper	L	Р	Credits
Theory P	apers				
		*Any one of the following:			
ES	ES101	Programming in 'C'	3	-	3
BS	BS103	Applied Chemistry			
BS	BS105	Applied Physics - I	3	-	3
		*Any one of the following:			
ES	ES107	Electrical Science	3	-	3
BS	BS109	Environmental Studies			
BS	BS111	Applied Mathematics - I	4	-	4
		**Group 1 or Group 2 shall be offered:			
HS	HS113	Group 1: Communications Skills	3	-	3
		OR			
		Group 2:			
HS	HS115	Indian Constitution	2		2
HS	HS117	Human Values and Ethics	1		1
ES	ES119	Manufacturing Process	4	-	4
Practical	/Viva Voce				
BS	BS151	Physics-I Lab	-	2	1
		Any of the following corresponding to the theory			
		paper offered:			
ES	ES153	Programming in 'C' Lab	-	2	1
BS	BS155	Applied Chemistry			
ES	ES157	Engineering Graphics-I	-	4	2
		Any of the following corresponding to the theory			
		paper offered:			
ES	ES159	Electrical Science Lab	-	2	1
BS	BS161	Environmental Studies Lab			
Total			20	10	25

*For a particular batch of a programme of study one out of these two papers shall be taught in the first semester while the other shall be taught in the 2nd semester. Students who have to re-appear can only reappear in the odd semester if originally offered to the student in the 1st semester and similarly for the students who study the paper in the second semester. The institution shall decide which paper to offer in which semester.

** For a particular batch of a programme of study either the paper on "Communications Skills" (Group 1), or Group 2: papers ("Indian Constitution" and "Human values and ethics") shall be taught in the first semester while the other group shall be taught in the 2nd semester. Students who have to re-appear can only reappear in the odd semester if originally offered to the student in the 1st semester and similarly for the students who study the paper(s) in the second semester. The institution shall decide which paper group to offer in which semester.

GroupPaper CodeTheory PapersESES102BSBS104BSBS106ESES108BSBS110BSBS112HSHS114	Paper *Any one of the following: Programming in 'C' Applied Chemistry Applied Physics - II *Any one of the following: Electrical Science Environmental Studies Applied Mathematics - II	L 3 3 3	P - -	Credits 3 3
Theory PapersESES102BSBS104BSBS106ESES108BSBS110BSBS112	Programming in 'C' Applied Chemistry Applied Physics - II *Any one of the following: Electrical Science Environmental Studies	3	-	_
ES ES102 BS BS104 BS BS106 ES ES108 BS BS110 BS BS112	Programming in 'C' Applied Chemistry Applied Physics - II *Any one of the following: Electrical Science Environmental Studies	3	-	_
BS BS104 BS BS106 ES ES108 BS BS110 BS BS112	Programming in 'C' Applied Chemistry Applied Physics - II *Any one of the following: Electrical Science Environmental Studies	3	-	-
BS BS104 BS BS106 ES ES108 BS BS110 BS BS112	Applied Chemistry Applied Physics - II *Any one of the following: Electrical Science Environmental Studies	3	-	-
BS BS106 ES ES108 BS BS110 BS BS112	Applied Physics - II *Any one of the following: Electrical Science Environmental Studies		-	3
ES ES108 BS BS110 BS BS112	*Any one of the following: Electrical Science Environmental Studies		-	3
BS BS110 BS BS112	Electrical Science Environmental Studies	3		
BS BS110 BS BS112	Environmental Studies	3		
BS BS112			-	3
	Applied Mathematics - II			
HS HS114		4	-	4
HS HS114	**Group 1 or Group 2 shall be offered:			
	Group 1: Communications Skills	3	-	3
	OR			
	Group 2:			
HS HS116	Indian Constitution	2		2
HS HS118	Human Values and Ethics	1		1
ES ES114	Engineering Mechanics	3	-	3
Practical/Viva Voce				
BS BS152	Physics-II Lab	-	2	1
	*Any of the following corresponding to the theory			
	paper offered:			
ES ES154	Programming in 'C' Lab	-	2	1
BS BS156	Applied Chemistry			
ES ES158	Engineering Graphics-II	-	2	1
	*Any of the following corresponding to the theory			
	paper offered:			
ES ES160	Electrical Science Lab	-	2	1
BS BS162	Environmental Studies Lab			
ES ES164	Workshop Practice		4	2
Total		19		· · · ·

*For a particular batch of a programme of study one out of these two papers shall be taught in the first semester while the other shall be taught in the 2nd semester. Students who have to re-appear can only reappear in the odd semester if originally offered to the student in the 1st semester and similarly for the students who study the paper in the second semester. The institution shall decide which paper to offer in which semester.

** For a particular batch of a programme of study either the paper on "Communications Skills" (Group 1), or Group 2: papers ("Indian Constitution" and "Human values and ethics") shall be taught in the first semester while the other group shall be taught in the 2nd semester. Students who have to re-appear can only reappear in the odd semester if originally offered to the student in the 1st semester and similarly for the students who study the paper(s) in the second semester. The institution shall decide which paper group to offer in which semester.

PaperCo				Pa	aper: Pro	ogrammi	ng in 'C'				L	T/P	С
PaperID	: 19910 [,]	1 / 1991	02								3	-	3
Marking	Scheme	:											
-			uous Eva			5							
			y Examin	ations: 7	75 marks								
Instruct													
			estions ir										
			on shoul							This que	stion	shou	ld be
			answers										
			1 which i										
			two ques										
			mpt only							estions m	iay co	ntair	i upto
			estions. E							,			
			be frame								er. In	e sta	ndard
			ons to be								f	irad	
Course (scientific	.) Calcula		g-lables	/ Uala -	lables II	lay be sp	ecinedi	requ	irea.	
1:				dao aha	ut cimple	, algorit	hma for	arithma	ic and I	orical a	rahlar		that
1:	To impart basic knowledge about simple algorithms for arithmetic and logical problems so that students can understand how to write a program syntax and logical errors in (C)												
2:	 students can understand how to write a program, syntax and logical errors in 'C'. To impart knowledge about how to implement conditional branching, iteration and recursion in 'C'. 												
3:			ledge ab										
э.		ograms ir		out using	g arrays,	pointers	, mes, u	mon anu	Sciuctur		etop	atgoi	ICIIIIS
4:		-	ledge ab	out how	to annro	ach for d	lividina a	problem	into sub	-probler	ກເລກ		o tho
ч.		n in 'C'.	leuge ab		to applo		inviuling a	problem	i iiito sut	p-probler		1 3011	eule
Course													
C01:			op simple	algorith	ms for a	rithmeti	and log	ical prob	lems and	l implem	ent th	em i	n 'C'
C02:			ment cor										
CO3:			rrays, poi									in 'C	,
C04:			npose a p										
			ch in 'C'				a synance	e u co	prece p		5	21710	
Course			o Progra		tcomes	(PO) Mar	pping (sc	ale 1: lo	w. 2: Me	edium. 3	: High	ı)	
CO/PO	P001	PO02	PO03	P004	P005	PO06	PO07	P008	PO09	PO10	PO1	_	PO12
CO1	3	3	2	1	1	-	-	-	2	1	1		3
CO2	3	3	2	1	1	-	-	-	2	1	1		3
CO3	3	3	3	1	1	-	-	-	2	1	1		3
CO4	3	3	3	1	1	-	-	-	2	1	1		3

Introduction to Programming: Computer system, components of a computer system, computing environments, computer languages, creating and running programs, Preprocessor, Compilation process, role of linker, idea of invocation and execution of a programme. Algorithms: Representation using flowcharts, pseudocode.

Introduction to C language: History of C, basic structure of C programs, process of compiling and running a C program, C tokens, keywords, identifiers, constants, strings, special symbols, variables, data types, I/O statements. Interconversion of variables.

Operators and expressions: Operators, arithmetic, relational and logical, assignment operators, increment and decrement operators, bitwise and conditional operators, special operators, operator precedence and associativity, evaluation of expressions, type conversions in expressions. [8Hrs][T2]

Unit II

Control structures: Decision statements; if and switch statement; Loop control statements: while, for and do while loops, jump statements, break, continue, goto statements.

Arrays: Concepts, One dimensional array, declaration and initialization of one dimensional arrays, two dimensional arrays, initialization and accessing, multi dimensional arrays.

Functions: User defined and built-in Functions, storage classes, Parameter passing in functions, call by value, Passing arrays to functions: idea of call by reference, Recursion.

Strings: Arrays of characters, variable length character strings, inputting character strings, character library functions, string handling functions. [8Hrs] [T2]

Unit III

Pointers: Pointer basics, pointer arithmetic, pointers to pointers, generic pointers, array of pointers, functions returning pointers, Dynamic memory allocation. Pointers to functions. Pointers and Strings

Structures and unions: Structure definition, initialization, accessing structures, nested structures, arrays of structures, structures and functions, self referential structures, unions, typedef, enumerations.

File handling: command line arguments, File modes, basic file operations read, write and append.

Scope and life of variables, multi-file programming.

[8Hrs][T2]

Unit IV

C99 extensions. 'C' Standard Libraries: stdio.h, stdlib.h, assert.h, math.h, time.h, ctype.h, setjmp.h, string.h, stdarg.h, unistd.h [3Hrs] [T1, R8]

Basic Algorithms: Finding Factorial, Fibonacci series, Linear and Binary Searching, Basic Sorting Algorithms-Bubble sort, Insertion sort and Selection sort. Find the square root of a number, array order reversal, reversal of a string [7Hrs][T1]

Textbooks:

- 1. How to solve it by Computer by R. G. Dromey, Prentice-Hall India EEE Series, 1982.
- 2. The C programming language by B W Kernighan and D M Ritchie, Pearson Education, 1988.

- 1. Programming Logic & Design by Tony Gaddis, Pearson, 2nd Ed. 2016.
- 2. Programming Logic and Design by Joyce Farrell, Cengage Learning, 2015.
- 3. Engineering Problem Solving With C by Delores M. Etter, Pearson, 2013.
- 4. Problem Solving and Program Design in C by Jeri R. Hanly and Elliot B. Koffman, Pearson, 2016.
- 5. Structure and Interpretation of Computer Programs by Harold Abelson and Gerald Sussman with Julie Sussman, MIT Press, 1985.
- 6. *How to Design Programs* by Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi, MIT Press, 2018.
- 7. ANSI/ISO 9899-1990, American National Standard for Programming Languages 'C' by American National Standards Institute, Information Technology Industry Council, 1990 (C89).
- 8. ISO/IEC 9899:1999. International Standard for Programming Languages C (ISO/IEC 9899) by American National Standards Institute, Information Technology Industry Council, 2000 (C99).
- 9. INCITS/ISO/IEC 9899-2011. American National Standard for Programming Languages 'C' by American National Standards Institute, Information Technology Industry Council, 2012 (C11).

PaperCo	de: BS10	3 / BS10	4	Pape	r: Applie	ed Chem	istry				L	T/P	С
PaperID:											3	-	3
Marking													
1.	Teachers	Continu	ous Evalı	uation: 2	5 marks								
2.	Term en	d Theory	Examina	tions: 75	i marks								
Instruction	on for pa	aper sett	er:										
						aminatior							
2. The f													
the s	tudents	will be r	equired	to answe	er any Tl	HREE par	ts of 5	marks e	ach. Thi	s unit w	ill hav	e a	total
	ntage of												
3. Apart													
						correspo							
						uestions				uestions	may c	onta	in up
						ave a ma							
4. The c											r. The	e stan	ndard
						t the leve							
			ntific) calo	culators /	log-table	s / data -	tables m	ay be spe	cified if r	equired.			
-	5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives:												
1:	To understand methods to make pure water and use fuels. To understand phase rule and its applications. Also, to understand the properties and industrial												
2:					s applica	ations. Al	so, to u	nderstar	nd the p	roperties	s and	indus	strial
			oolymers										
3:						terize en							
4:			the ba	sics of	Green	Chemist	ry, Nan	ochemis	try and	Chemic	cal a	spect	s of
		nology.											
Course O		<u> </u>											
CO1:						and perfe							
CO2:	Underst	tand pha	ase rule	and its	applica	tions. A	so, unc	lerstand	the pr	operties	and	indus	strial
	applica	tions of p	oolymers										
CO3:	Ability	to use te	chniques	s used to	characte	erize eng	ineering	materia	ls and th	hermody	namic	s	
CO4:	Underst	tand the	basics of	Green C	Chemistry	/, Nanocł	nemistry	and Che	emical as	spects of	biote	chno	logy.
Course O	utcomes	6 (CO to l	Program	me Outc	omes (P	0) Mappi	ng (scal	e 1: low	, 2: Mec	lium, 3:	High		
CO/PO	PO01	P002	PO03	P004	PO05	P006	P007	P008	P009	PO10	P01	1 F	PO12
CO1	2	2	3	3	2	-	-	-	1	1	-		1
CO2	2	2	3	3	2	-	-	-	1	1	-		1
СО3	2	2	3	3	2	-	-	-	1	1	-		1
CO4	2	2	3	3	2	1	1	-	1	1	-		1

Fuels: Classification and Characteristics of fuels, Calorific values, Comparison between solid, liquid and gaseous fuels, calorimeter, Calorific value of fuel, Theoretical calculation of calorific value of a fuel, Types of fuels: Solid (coal), Liquid (Petroleum products, refining, cracking, synthetic petrol, Knocking and rating), Gaseous (Natural, CNG, LPG, Coal gas, Oil gas, Producer Gas, Water gas), Non-Conventional sources of energy.

Water treatment: Introduction, Hardness of water, Disadvantages of hard water, Water usage in Industries, boiler problems with hard water, Water-softening, Drinking Water, Desalination, Defluoridation, Waster Water Management, Chemical Analysis of Water, and corrosion (effect, type, mechanism, control). [9Hrs] [T1]

Unit II

Phase rule: Phase diagram, Water System, Sulphur System, Two Component System (Pb-Ag, Zn-Mg, Fe-C), Metalals, Alloys, Heat treatment of steel.

Polymers: Classification, functionality, Mechanism of Polymerization, Molecular weight of Polymers, Plastics, Rubbers, Fibres, Specialty Polymers, Degradation of Polymers, Polymer Composites, Adhesives.

Lubricants: Functions, Mechanism of lubrication, classification, synthetic and natural lubricants, lubricating emulsions, properties, selection on the basis of usage. [9Hrs][T1, T2]

Unit III

Spectroscopic Techniques: Basic principles of spectroscopic methods. Electronic (UV-Visible) spectroscopy, IR spectroscopy, Rotational and Vibrational-Rotational Spectroscopy of diatomic molecules, NMR, Raman Spectroscopy. [T1,T2]

Thermodynamics: The laws (zeroth, 1st and 2nd), Heat Capacity, Ideal Gases and Thermodynamic processes (isothermal, adiabatic), laws of thermochemistry, Kichhoff's eqs., Joule-Thomson effect, Entropy and its usage in thermodynamic systems, Gibbs - Helmholtz equation, Claypeyron - Clausius eq., Maxwell's relations, spontaneity and equilibrium. [9Hrs][T2]

Unit IV

Green Chemistry: Principles, Biofuels, Innocuous Reagents, Alternative Solvents, Design of safer chemicals, minimizing energy consumption.

Nanochemistry: Properties, Synthesis and characterization of Nanomaterials, Applications. Chemical Aspects of Biotechnology: Biocatalysts or Enzymes, Fermentation, Outline of fermentation process. [9Hrs][T2]

Textbooks:

- 1. Applied Chemistry by Achyutananda Acharya and Biswajit Samantray, Pearson, 2017.
- 2. Engineering Chemistry: Fundamentals and Applications by Shikha Agarwal, Cambridge University Press, 2019.

- 1. Applied Chemistry: A Textbook of Engineers and Technologists by O. V. Roussk and H. D. Gesser, Springer, 2013.
- 2. Engineering Chemistry by Raghupati Mukhopadhyay and Sriparna Datta, New Age Int. (P0 Ltd., 2007.
- 3. Engineering Chemistry by K. Shesha Maheswaramma and Mridula Chugh, Pearson, 2017.
- 4. Basic Engineering Chemistry by S.S. Dara, A. K.Singh, and Abhilasha Asthana, S. Cand and Co., 2012.
- 5. Engineering Chemistry by K. N. Jayaveera, G.V. Subba Reddy, and C. Ramachandraiah, McGraw Hill, 2016.
- 6. Engineering Chemistry by O. G. Palanna, McGraw-Hill, 2017.
- 7. Textbook of Engineering Chemistry by Jaya Shree Anireddy, Wiley, 2017.
- 8. Engineering Chemistry by E.R. Nagarajan and S. Ramalingam, Wiley, 2017.

PaperCo	ode: BS1	05	Paper:	Applied	1 Physics	5 - I					L	T/P	С
PaperID	: 99105										3	-	3
Marking	Scheme	:											
1.	Teache	rs Contin	uous Eva	luation:	25 marks	5							
2.	Term ei	nd Theor	y Examin	ations: 7	75 marks								
Instruct	ion for p	oaper set	tter:										
			ions in the										
	· · ·	•	should be				ntire sylla	abus.This	question	should be	obje	ctive,	single
			swer type								_		
			hich is cor										
			ering the stions in t										
			htage of 1		iuiviuuat	questions	may conta	ani upto s	sub-parts	s / sub-qu	estioi	is. Lac	ii onit
		•	framed k		view the	learning o	outcomes	of the co	urse / par	per. The s	stand	lard /	level
	•					•							
	of the questions to be asked should be at the level of the prescribed textbook. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required.												
	rse Objectives:												
1:	To understand thermodynamic principles.												
2:	To und	erstand a	and mode	el oscilla	tions and	l waves.							
3:	To und	erstand a	and mode	el interfe	erence, d	liffractio	n and po	larizatio	n phenor	nenon.			
4:			and appre										
Course	Outcome					<i>.</i>							
C01:	Ability	to apply	thermod	vnamic I	orinciple	s to solu	tion of er	ngineerir	ng proble	ms.			
CO2:			stand an					<u> </u>	51				
CO3:			stand an					and pola	rization	phenome	enon.		
C04:			stand an										
			Progran							dium. 3:	High	1	
CO/PO	PO01	PO02	PO03	P004	PO05	P006	P007		PO09	PO10	PO		PO12
CO1	2	2	3	3	2	-	-	-	1	1	-		2
CO2	2	2	3	3	2	-	-	-	1	1	-		2
CO3	2	2	3	3	2	-	-	-	1	1	-		2
CO4	2	2	3	3	2	-	-	-	1	1	-		2

Introduction to Thermodynamics: Fundamental Ideas of Thermodynamics, The Continuum Model, The Concept of a "System", "State", "Equilibrium", "Process". Equations of state, Heat, Zeroth Law of Thermodynamics, Work, first and second laws of thermodynamics, entropy [8Hrs]

Unit II

Waves and Oscillations: Wave motion, simple harmonic motion, wave equation, superposition principle. Introduction to Electromagnetic Theory: Maxwell's equations. work done by the electromagnetic field, Poynting's theorem, Momentum, Angular momentum in electromagnetic fields, Electromagnetic waves: the wave equation, plane electromagnetic waves, energy carried by electromagnetic waves [8Hrs]

Unit III

Interference: Interference by division of wave front (Young's double slit experiment, Fresnel's biprism), interference by division of amplitude (thin films, Newton's rings, Michelson's interferometer), Coherence and coherent sources

Diffraction: Fraunhofer and Fresnel diffraction; Fraunhofer diffraction for Single slit, double slit, and N-slit (diffraction grating), Fraunhofer diffraction from a circular aperture, resolving power and dispersive power of a grating, Rayleigh criterion, resolving power of optical instruments

Polarization: Introduction to polarization, Brewster's law, Malu's law, Nicol prism, double refraction, quarterwave and half-wave plates, optical activity, specific rotation, Laurent half shade polarimeter. [12Hrs]

Unit IV

Theory of relativity: The Michelson-Morley Experiment and the speed of light; Absolute and Inertial frames of reference, Galilean transformations, the postulates of the special theory of relativity, Lorentz transformations, time dilation, length contraction, velocity addition, mass energy equivalence. Invariance of Maxwell's equations under Lorentz Transformation.

Introduction to Laser Physics: Introduction, coherence, Einstein A and B coefficients, population inversion, basic principle and operation of a laser, the He-Ne laser and the Ruby laser [12Hrs]

Textbooks:

- 1. Concepts of Modern Physics (SIE) by Arthur Beiser, Shobhit Mahajan, and S. Rai Choudhury, McGraw-Hill, 2017.
- 2. Physics for Scientists and Engineers by Raymond A. Serway and John W. Jewett, 9th Edition, Cengage, 2017

- Modern Physics by Kenneth S. Krane, Wiley, 2020.
 Principles of Physics by Robert Resnick, Jearl Walker and David Halliday, Wiley, 2015.
 Optics by Ajoy Ghatak, McGraw Hill, 2020.

PaperCo	ode: ES1	07 / ES1	08	Pape	r: Electr	ical Scie	nce				L	T/P	С
PaperID	: 199107	7 / 1991	08								3	-	3
Marking	Scheme	:											
1.	Teache	rs Contin	uous Eva	luation:	25 marks	S							
2.	Term er	nd Theor	y Examin	ations: 7	75 marks								
	ion for p												
1. Ther	re should	l be 9 qu	estions ir	n the ter	m end ex	kaminati	ons quest	tion pape	er.				
			ion shoul							This que	stion	shou	ld be
			answers										
			1 which i										
			two ques										
			mpt only							estions m	nay co	ontair	ו upto
			estions. E										
			pe frame								er. Th	ne sta	ndard
	/ level of the questions to be asked should be at the level of the prescribed textbook.												
	The requirement of (scientific) calculators / log-tables / data - tables may be specified if required.												
L	To impart knowledge of the basics electrical engineering.												
1:													
2:			ledge of										
3:			knowled					cuits.					
4:			knowled	lge abou	t electric	cal mach	ines.						
L	Outcome												
C01:			stand an										
CO2:			e resistiv	e, induc	tive and	capacitiv	e circuit	s for trai	nsient an	d steady	state	e sinu	soidal
	solution												
CO3:			first ord				rcuits.						
CO4:	Unders	tand the	design o	t electri	cal mach	ines.							
			Progran										
CO/PO	PO01	P002	P003	P004	P005	P006	P007	P008	P009	PO10	PO		PO12
CO1	3	3	3	3	3	-	-	-	1	1	1		2
CO2	3	3	3	3	3	-	-	-	1	1	1		2
CO3	3	3	3	3	3	-	-	-	1	1	1		2
CO4	3	3	3	3	3	-	-	-	1	1	1		2

Unit - I

DC Circuits: Passive circuit components, Basic laws of Electrical Engineering, Temperature Resistance Coefficients. voltage and current sources, Series and parallel circuits, power and energy, Kirchhoff's Laws, Nodal & Mesh Analysis, delta-star transformation, superposition theorem, Thevenin's theorem, Norton's theorem, maximum power transfer theorem. Time domain analysis of first Order RC & LC circuits. [9Hrs] [T1]

Unit - II

AC Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections. [9Hrs] [T1]

Unit - III

D. C. Generators & Motors: Principle of operation of Generators & Motors, Speed Control of shunt motors, Flux control, Rheostatic control, voltage control, Speed control of series motors.

A. C. Generators & Motors: Principle of operation, Revolving Magnetic field, Squirrel cage and phase wound rotor, Starting of Induction motors, Direct on line and Star Delta starters, Synchronous machines. [9Hrs [T1]]

Unit - IV:

Transformers: Construction and principle of operation, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

Measuring Instruments: Electromagnetism, Different Torques in Indicating instruments, Moving Iron Instruments: Construction & Principle, Attraction and Repulsion type; Moving Coil instruments: Permanent Magnet type; Dynamometer type Instruments. [9Hrs] [T1]

Textbooks:

1. Electrical Engineering Fundamentals by Vincent Del Toro, PHI (India), 1989

- 1. An Introduction to Electrical Science by Adrian Waygood, Routledge, 2nd Ed. 2019.
- 2. Electrical Circuit Theory and Technology by John Bird, Elsevier, 2007.
- 3. Principles and Applications of Electrical Engineering by Giorgio Rizzoni, MacGraw-Hill, 2007.
- 4. Electrical Engineering by Allan R. Hambley, Prentice-Hall, 2011.

- Hughes Electical & Electronic Technology by Edward Hughes revised by Hohn Wiley, Keith Brown and Ian McKenzie Smith, Pearson, 2016.
 Electrical and Electronics Technology by E. Hughes, Pearson, 2010.
 Basic Electrical Engineering by D.C. Kulshrestha, McGraw-Hill, 2009.
 Basic Electrical Engineering by D. P. Kothai and I.J. Nagrath, McGraw-Hill, 2010.

PaperCode: BS109 / BS110	Paper: E	nvironm	ental St	udies				L	Р	С		
PaperID: 99109 / 99110								3	-	3		
Marking Scheme:												
1. Teachers Continuous Ex			-									
2. Term end Theory Exam	nations: 7	75 marks										
Instruction for paper setter:												
1. There should be 9 questions												
2. The first (1 st) question show							This que	stion	shou	ıld be		
objective, single line answer												
3. Apart from question 1 which												
Every unit shall have two qu												
shall be asked to attempt on							estions m	nay co	ontair	i upto		
5 sub-parts / sub-questions.												
4. The questions are to be fram									ام میں ان			
5. The requirement of (scientif Course Objectives:	c) calcula	ators / lo	g-tables	/ data -	tables n	iay be sp	ecified i	r req	urea	,		
	to import	hasis ka		of the e	nironm	ont ond i	te como		~			
· · · · · · · · · · · · · · · · · · ·										ontal		
	The course deals in creating awareness about the energy resources and current environmental problems faced by the world.											
	To understand and learn about environment pollution, related case studies and measures taken for											
control to pollution.	ii about e		ent pottu			- studies		asure	s tan			
4: To understand and exp	lore diffe	rent ann	roaches	of conse	rving and			ronm	ont fr	or the		
benefit of society.		ient app	roaches	or conse	i ving and	i protect	ing chivin	Unin		Ji ule		
Course Outcomes (CO):												
CO1: Environmental Studies	course wi	ll provid	e necess	arv infor	mation a	nd know	ledge at	out	the v	arious		
aspects of environmen							J					
CO2: Students will be able to						and sust	ainable u	ise of	resou	urces,		
environmental problem												
CO3: Course will help them								sues	and r	ole of		
human in conservation	and prote	ction of	environ	ment.	•							
CO4: Overall, course will hel	p students	s to deve	lop skills	and abil	ity of un	derstand	ing envir	onme	ent- h	iuman		
relationship.												
Course Outcomes (CO to Progra	mme Out	comes (PO)) Map	oping (sc	ale 1: lo	w, 2: Me	edium, 3	: Hig	h)			
CO/PO PO01 PO02 PO03	P004	PO05	P006	P007	P008	P009	PO10	PO	11	PO12		
CO1 - 1 1	-	-	3	3	2	1	1	1		1		
CO2 - 1 1	-	-	3	3	2	1	1	1		1		
CO3 - 1 1	-	-	3	3	2	1	1	1		1		
CO4 - 1 1	-	-	3	3	2	1	1	1		1		

Fundamentals: The Multidisciplinary nature of environmental studies: Definition, components, scope and importance, need for public awareness; Natural Resources.

Ecosystems: Concept, Structure and function of an ecosystem, Types, Functional Components, Different ecosystems, biogeochemical cycles.

Biodiversity: Introduction to biodiversity, biogeographical classification, India as a mega diversity nation, endangered and endemic species of India, threats to biodiversity and conservation of biodiversity. Bioprospecting and Biopiracy. [10Hrs]

[T1,T2]

Unit III

Environmental Pollution: (a) Air Pollution: Source, Types, effects on biosphere and Meterology, Air Quality, Control. (b) Water Pollution: Types and Sources. (c) Soil Pollution: Types and Control. (d) Noise Pollution: Effect, Control (e) Thermal Pollution. (f) Radiation Pollution (g) Solid waste Management, (h) Pollution Prevention, (i) Disaster Management [10Hrs][T1,T2]

Unit III

Social Issues and Environment: Concept of Sustainable Development; Urban problem related to energy; Water Conservation; Wasteland reclamation; Resettlement and Rehabilitation; Climate Change; Nuclear Accidents; Consumerism and Waste Products; Laws related to Environment, Pollution, Forest and Wild life; Environmental Impact Assessment. [8Hrs] [T1,T2]

Unit IV

Human Population and Environment: Population Growth, Human Rights, Family Welfare Programmes, Environment and Human Health, HIV/AIDS, Women and Child Welfare, Role of IT. [8Hrs] [T1,T2]

Textbooks:

- 1. Environmental Studies by Anindita Basak, Pearson, 2009.
- 2. Environmental Studies: Simplified by Benny Joseph, McGraw-Hill, 2017.

- 1. Environmental Studies by D. L. Manjunath, Pearson, 2007.
- 2. Environmental Studies by Anil Kumar De and Arnab Kumar De, New Age Int. (P) Ltd, Publishers, 2005.
- 3. Companion to Environmental Studies edited by Coel Castree, Mike Hulme, and James D. Proctor, Routledge, 2018.
- 4. *Environmental Studies* by Deepa Sharma and Bhupendra Singh Chabbra, New Age Int. (P) Ltd, Publishers, 2007.
- 5. Environmental Studies: Simplified by Raj Kumar Singh, McGraw-Hill, 2012.
- 6. Basics of Environmental Studies by U. K. Khare, McGraw-Hill, 2014.

PaperID: 99111 4 - 4 Marking Scheme: - 4 - 4 Marking Scheme: - - 4 1. Teachers Continuous Evaluation: 25 marks - - - 4 1. There should be 9 questions in the term end examinations question paper. -	PaperCo	ode: BS1	11	Paper	: Applied	d Mather	natics -					L	T/P	C	
 Teachers Continuous Evaluation: 25 marks Term end Theory Examinations: 75 marks Instruction for paper setter: There should be 9 questions in the term end examinations question paper. The first (1^{s1}) question should be compulsory and cover the entire syllabus. This question should be objective, single line answers or short answer type question of total 15 marks. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: To understand use series, differential and integral methods to solve formulated engineering problems. To understand use linear algebra to solve formulated engineering problems. Coi: Ability to use series, differential and integral methods to solve formulated engineering problems. CO2: Ability to use linear algebra to solve formulated engineering problems. CO2: Ability to use Vector calculus to solve formulated engineering problems. CO2: Ability to use Vector calculus to solve formulated engineering problems. CO2: Ability to use linear algebra to solve formulated engineering problems. CO2: Ability to use Vector calculus to solve formulated engineering problems.	PaperID	: 99111										4	-	4	
 Term end Theory Examinations: 75 marks Instruction for paper setter: There should be 9 questions in the term end examinations question paper. The first (1st) question should be compulsory and cover the entire syllabus. This question should be objective, single line answers or short answer type question of total 15 marks. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: To understand use series, differential and integral methods to solve formulated engineering problems. To understand use linear algebra to solve formulated engineering problems. To understand use linear algebra to solve formulated engineering problems. Ability to use series, differential and integral methods to solve formulated engineering problems. CO1: Ability to use vector calculus to solve formulated engineering problems. CO2: Ability to use vector calculus to solve formulated engineering problems. CO3: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems.	Marking	Scheme	;;												
Instruction for paper setter: 1. There should be 9 questions in the term end examinations question paper. 2. The first (1st) question should be compulsory and cover the entire syllabus. This question should be objective, single line answers or short answer type question of total 15 marks. 3. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. 6: Ability to use Ordinary Differential Equations to solve formulated engineering problems. C01: Ability to use Ordinary Differential Equations to solve formulated engineering problems. C02: Ability to use Vector calculus	1.	Teache	rs Contin	iuous Eva	luation:	25 marks	s								
 There should be 9 questions in the term end examinations question paper. The first (1st) question should be compulsory and cover the entire syllabus. This question should be objective, single line answers or short answer type question of total 15 marks. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: To understand use series, differential and integral methods to solve formulated engineering problems. To understand use linear algebra to solve formulated engineering problems. To understand use vector calculus to solve formulated engineering problems. Ability to use linear algebra to solve formulated engineering problems. CO1: Ability to use linear algebra to solve formulated engineering problems. CO2: Ability to use linear algebra to solve formulated engineering problems. CO4: Ability to use linear algebra to solve formulated engineering problems. CO4: Ability to use linear algebra to solve formulated engineering problems. CO4: Ability to use linear algebra to solve formulated engineering problems. CO4: Ability to use linear algebra to solve formulated engineering problem	2.	Term e	nd Theor	y Examir	nations: 7	75 marks									
 The first (1st) question should be compulsory and cover the entire syllabus. This question should be objective, single line answers or short answer type question of total 15 marks. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: To understand use series, differential and integral methods to solve formulated engineering problems. To understand use Ordinary Differential Equations to solve formulated engineering problems. To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): Co1: Ability to use ordinary Differential Equations to solve formulated engineering problems. CO2: Ability to use ordinary Differential Equations to solve formulated engineering problems. CO2: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problem	Instruct	ion for p	paper se	tter:											
objective, single line answers or short answer type question of total 15 marks. 3. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. CO2: Ability to use series, differential and integral methods to solve formulated engineering problems. CO2: Ability to use series, differential and integral methods to solve formulated engineering problems. CO1: Ability to use series, differential and integral methods to solve formulated engineering problems. CO2: Ab															
 3. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per the syllabus. Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. C01: Ability to use series, differential and integral methods to solve formulated engineering problems. C02: Ability to use ordinary Differential Equations to solve formulated engineering problems. C03: Ability to use linear algebra to solve formulated engineering problems. C04: Ability to use linear algebra to solve formulated engineering problems. C04: Ability to use vector calculus to solve formulated engineering problems. C04: Ability to use Vector calculus to solve formulated engineering problems. C04: Ability to use Vector calculus to solve formulated engineering problems. C04: Ability to use Vector calculus to solve formulated engineering problems. C04: Ability to use Vector calculus to solve formulated engineering problems. C04: Ability to use Vector calculus to solve formulate											This que	stion	shou	ld be	
Every unit shall have two questions covering the corresponding unit of the syllabus. However, the student shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use vector calculus to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): C01: Ability to use series, differential and integral methods to solve formulated engineering problems. C02: Ability to use ordinary Differential Equations to solve formulated engineering problems. C02: Ability to use Vector calculus to solve formulated engineering problems. C01: Ability to use vector calculus to solve formulated engineering problems. C02: Ability to use vector calculus to solve formulated eng															
shall be asked to attempt only one of the two questions in the unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use Vector calculus to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. CO1: Ability to use series, differential and integral methods to solve formulated engineering problems. CO2: Ability to use ordinary Differential Equations to solve formulated engineering problems. CO3: Ability to use linear algebra to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calcul															
5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15. 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. CO1: Ability to use series, differential and integral methods to solve formulated engineering problems. CO2: Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO2: Ability to use linear algebra to solve formulated engineering problems. CO3: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use linear algebra to solve formulated engineering problems. CO3: Ability to use vector calculus to solve formulated engineering problems. <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>															
 4. The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use Vector calculus to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Col: Ability to use series, differential and integral methods to solve formulated engineering problems. CO2: Ability to use Ordinary Differential Equations to solve formulated engineering problems. CO3: Ability to use linear algebra to solve formulated engineering problems. CO4: Ability to use linear algebra to solve formulated engineering problems. CO4: Ability to use linear algebra to solve formulated engineering problems. CO4: Ability to use linear algebra to solve formulated engineering problems. CO4: Ability to use linear algebra to solve formulated engineering problems. CO4: Ability to use linear algebra to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use Vector calculus to solve formulated engineering problems. CO4: Ability to use Vector calculus to solve formulated engineering problems. CO4: Ability to use Vector calculus to solve formulated engineering problems. CO4: Ability to use Vector calculus to solve formulated engineering problems. CO4: Ability to use Vector calculus to solve formulated engineering problems. CO4: Ability to Use Vector ca											estions m	nay co	ontain	upto	
 / level of the questions to be asked should be at the level of the prescribed textbook. 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: To understand use series, differential and integral methods to solve formulated engineering problems. To understand use Ordinary Differential Equations to solve formulated engineering problems. To understand use vector calculus to solve formulated engineering problems. To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): Co1: Ability to use series, differential and integral methods to solve formulated engineering problems. Co2: Ability to use ordinary Differential Equations to solve formulated engineering problems. CO2: Ability to use vector calculus to solve formulated engineering problems. Co4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use vector calculus to solve formulated engineering problems. CO4: Ability to use Vector Calculus to solve formulated engineering problems. CO4: Ability to use Vector Calculus to solve formulated engineering problems. CO4: Ability to use Vector Calculus to solve formulated engineering problems. CO4: Ability to use Vector Calculus to solve formulated engineering problems. CO7PO PO01 PO02 PO03 PO04 PO05 PO06 PO											,				
 5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required. Course Objectives: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): Co1: Ability to use series, differential Equations to solve formulated engineering problems. Co2: Ability to use Ordinary Differential Equations to solve formulated engineering problems. Co3: Ability to use linear algebra to solve formulated engineering problems. Co4: Ability to use vector calculus to solve formulated engineering problems. Co4: Ability to use vector calculus to solve formulated engineering problems. Co4: Ability to use vector calculus to solve formulated engineering problems. Co4: Ability to use vector calculus to solve formulated engineering problems. Co4: Ability to use vector calculus to solve formulated engineering problems. Co4: Ability to use vector calculus to solve formulated engineering problems. Co2: 2 3 3 3 1 1 1 2 Co2 2 3 3 3 3 1 2 2 2 Co3 2 3 3 3 1 2 2 2												er. Ir	ne stai	ndard	
Course Objectives: 1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): C01: Ability to use series, differential and integral methods to solve formulated engineering problems. C02: Ability to use ordinary Differential Equations to solve formulated engineering problems. C03: Ability to use vector calculus to solve formulated engineering problems. C04: Ability to use vector calculus to solve formulated engineering problems. Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High C0/PO PO01 PO02 PO03 PO04 PO05 PO08 PO09 PO10 PO11 PO12 C01 2 3 3 1 - - - 2 2 C01 2 3 3 1 - - - 2 2 2 C01 </td <td></td> <td>£</td> <td>ام م ما</td> <td></td>												£	ام م ما		
1: To understand use series, differential and integral methods to solve formulated engineering problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): C01: Ability to use series, differential and integral methods to solve formulated engineering problems. C02: Ability to use linear algebra to solve formulated engineering problems. C03: Ability to use vector calculus to solve formulated engineering problems. C04: Ability to use vector calculus to solve formulated engineering problems. C07PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 C01 2 3 3 1 - - - 2 2 C02 2 3 3 1 - - - 2 2															
problems. 2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): C01: Ability to use series, differential and integral methods to solve formulated engineering problems. C02: Ability to use ordinary Differential Equations to solve formulated engineering problems. C03: Ability to use linear algebra to solve formulated engineering problems. C04: Ability to use vector calculus to solve formulated engineering problems. Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High C07PO P001 P002 P003 P004 P005 P006 P007 P008 P009 P010 P011 P012 C01 2 3 3 1 - - - - 2 2 C011 2 3 3 1 - - - 2 2 2	L														
2: To understand use Ordinary Differential Equations to solve formulated engineering problems. 3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): C01: Ability to use series, differential and integral methods to solve formulated engineering problems. C02: Ability to use Ordinary Differential Equations to solve formulated engineering problems. C03: Ability to use linear algebra to solve formulated engineering problems. C04: Ability to use vector calculus to solve formulated engineering problems. Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High C0/PO P001 P002 P003 P004 P005 P006 P007 P008 P009 P010 P011 P012 C01 2 3 3 1 - - - 1 2 C02 2 3 3 1 - - - 2 2 C03 2 3 3 1 - - - 2 2	1.			use ser	ies, un	erentiat	and int	egrat me	ethous to	J SOLVE	Tormula	leu e	ingine	ering	
3: To understand use linear algebra to solve formulated engineering problems. 4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): C01: Ability to use series, differential and integral methods to solve formulated engineering problems. C02: Ability to use Ordinary Differential Equations to solve formulated engineering problems. C03: Ability to use linear algebra to solve formulated engineering problems. C04: Ability to use vector calculus to solve formulated engineering problems. Course Outcomes (CO to Programe Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High C07PO P001 P002 P003 P004 P005 P006 P007 P008 P009 P010 P011 P012 C01 2 3 3 1 - - - 1 2 C02 2 3 3 1 - - - 2 2 C03 2 3 3 1 - - - 2 2	2.			use Ordin	ary Diffe	orontial P	Equation	s to solve	formula	ted engi	neering	nrohl	oms		
4: To understand use vector calculus to solve formulated engineering problems. Course Outcomes (CO): C01: Ability to use series, differential and integral methods to solve formulated engineering problems. C02: Ability to use ordinary Differential Equations to solve formulated engineering problems. C03: Ability to use linear algebra to solve formulated engineering problems. C04: Ability to use vector calculus to solve formulated engineering problems. Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High C07PO P001 P002 P003 P004 P005 P006 P007 P008 P009 P010 P011 P012 C01 2 3 3 1 - - - 1 2 C03 2 3 3 1 - - - 2 2												probl	cms.		
Course Outcomes (CO):CO1:Ability to use series, differential and integral methods to solve formulated engineering problems.CO2:Ability to use Ordinary Differential Equations to solve formulated engineering problems.CO3:Ability to use linear algebra to solve formulated engineering problems.CO4:Ability to use vector calculus to solve formulated engineering problems.CO4:Ability to use vector calculus to solve formulated engineering problems.CO4:Ability to use vector calculus to solve formulated engineering problems.Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: HighCO/POPO01PO02PO03PO04PO05PO06PO07PO08PO09PO10PO11PO12CO12C0123311C022333122CO3233122								-	-						
CO1:Ability to use series, differential and integral methods to solve formulated engineering problems.CO2:Ability to use Ordinary Differential Equations to solve formulated engineering problems.CO3:Ability to use linear algebra to solve formulated engineering problems.CO4:Ability to use vector calculus to solve formulated engineering problems.CO4:Ability to use vector calculus to solve formulated engineering problems.CO4:Ability to use vector calculus to solve formulated engineering problems.Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: HighCO/POPO01PO02PO03PO04PO05PO06PO07PO08PO09PO10PO11PO12CO123CO22331CO32331CO32331CO32331222						15 10 5014		accu ch	sincering	problem					
CO2: Ability to use Ordinary Differential Equations to solve formulated engineering problems.CO3: Ability to use linear algebra to solve formulated engineering problems.CO4: Ability to use vector calculus to solve formulated engineering problems.Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: HighCO/POPO01PO02PO03PO04PO05PO06PO07PO08PO09PO10PO11PO12CO1233112CO22333122CO32333122				eries, dif	ferential	and inte	oral met	hods to	solve for	mulated	enginee	ring r	oroble	ms	
CO3: Ability to use linear algebra to solve formulated engineering problems.CO4: Ability to use vector calculus to solve formulated engineering problems.Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: HighCO/POPO01PO02PO03PO04PO05PO06PO07PO08PO09PO10PO11PO12CO1233112CO22333122CO32333122															
CO4: Ability to use vector calculus to solve formulated engineering problems. Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 1 - - - - 1 2 CO2 2 3 3 1 - - - - 2 2 2 CO3 2 3 3 1 - - - - 2 2 2												0			
Course Outcomes (CO to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 1 - - - - 1 2 CO2 2 3 3 1 - - - - 2 2 CO3 2 3 3 1 - - - - 2 2															
CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12 CO1 2 3 3 1 - - - - 1 2 CO2 2 3 3 1 - - - - 2 2 CO3 2 3 3 1 - - - - 2 2											dium. 3:	High	1		
CO1 2 3 3 3 1 - - - - 1 2 CO2 2 3 3 3 1 - - - - 1 2 CO3 2 3 3 3 1 - - - - 2 2												_		PO12	
CO3 2 3 3 1 2 2		2	3	3	3	1	-	-	-	-	-	1		2	
CO3 2 3 3 3 1 2 2	CO2	2	3	3	3	1	-	-	-	-	-	2	1	2	
		2	3	3	3	1	-	-	-	-	-	2	1	2	
		2	3	3	3	1	-	-	-	-	-		1	2	

Partial derivatives, Chain rule, Differentiation of Implicit functions, Exact differentials. Maxima, Minima and saddle points, Method of Lagrange multipliers. Differentiation under Integral sign, Jacobians and transformations of coordinates. [8Hrs][T2]

Unit II

Ordinary Differential Equations (ODEs): Basic Concepts. Geometric Meaning of y' = f(x, y). Direction Fields, Euler's Method, Separable ODEs. Exact ODEs. Integrating Factors, Linear ODEs. Bernoulli Equation. Population Dynamics, Orthogonal Trajectories. Homogeneous Linear ODEs with Constant Coefficients. Differential Operators. Modeling of Free Oscillations of a Mass-Spring System, Euler-Cauchy Equations. Wronskian, Nonhomogeneous ODEs, Solution by Variation of Parameters.

Power Series Method for solution of ODEs: Legendre's Equation. Legendre Polynomials, Bessel's Equation, Bessels's functions Jn(x) and Yn(x). Gamma Function [12Hrs][T1]

Unit III

Linear Algebra: Matrices and Determinants, Gauss Elimination, Linear Independence. Rank of a Matrix. Vector Space. Solutions of Linear Systems and concept of Existence, Uniqueness, Determinants. Cramer's Rule, Gauss-Jordan Elimination. The Matrix Eigenvalue Problem.

Determining Eigenvalues and Eigenvectors, Symmetric, Skew-Symmetric, and Orthogonal Matrices. Eigenbases. Diagonalization. Quadratic Forms. Cayley - Hamilton Theorem (without proof) [10Hrs][T1]

Unit IV

Vector Calculus: Vector and Scalar Functions and Their Fields. Derivatives, Curves. Arc Length. Curvature. Torsion, Gradient of a Scalar Field. Directional Derivative, Divergence of a Vector Field, Curl of a Vector Field, Line Integrals, Path Independence of Line Integrals, Double Integrals, Green's Theorem in the Plane, Surfaces for Surface Integrals, Surface Integrals, Triple Integrals, Stokes Theorem. Divergence Theorem of Gauss.

[10Hrs][T1]

Textbooks:

- 1. Advanced Engineering Mathematics by Erwin Kreyszig, John Wiley, 10th Ed., 2011.
- 2. *Mathematical Methods for Physics and Engineering*, by K. F. Riley, M. P. Hobson and S. J. Bence, CUP, 2013. (for Unit I)

- Engineering Mathematics by K.A. Stroud with Dexter J. Booth, Macmillan, 2020.
 Advanced Engineering Mathematics by Larry Turyn, Taylor and Francis, 2014.
 Advanced Engineering Mathematics by Dennis G. Zill, Jones & Bartlett Learning, 2018.
 Advanced Engineering Mathematics with MATLAB by Dean G. Duffy, Taylor and Francis, 2017.
 Advanced Engineering Mathematics by Merle C. Potter, Jack L. Lessing, and Edward F. Aboufadel, Springer (Switzerland), 2019.

PaperCo	ode: HS1	13 / HS1	14	Paper: C	ommuni	cations S	Skills				L	T/P	C
	: 98113										3	-	3
Marking	Scheme	:											
3.	Teacher	rs Contin	uous Eva	luation:	25 marks	S							
4.	Term er	nd Theor	y Examir	nations: 7	75 marks								
Instruct	ion for p	aper set	tter:										
1. The	re should	be 9 qu	estions i	n the ter	m end e	kaminati	ons quest	tion pape	er.				
2. The	first (1s	^t) questi	on shou	ld be co	mpulsory	y and co	over the	entire s	yllabus.	This que	stion	shoul	d be
obje	ctive, si	ngle line	answers	or short	answer	type que	stion of t	total 15 i	marks.				
3. Apar	rt from q	uestion	1 which i	is compu	lsory, re	st of the	paper sł	nall cons	ist of 4 u	inits as p	er the	e sylla	abus.
Ever	y unit sh	all have	two ques	stions cov	vering th	e corresp	onding ι	unit of th	e syllabu	is. Howe	ver, tł	ne stu	Ident
			mpt only							estions m	ay co	ntain	upto
			stions. E										
											er. The	e stan	dard
/ lev	The questions are to be framed keeping in view the learning outcomes of the course / paper. The standard / level of the questions to be asked should be at the level of the prescribed textbook.												
Course	Course Objectives:												
1:	· · · · · · · · · · · · · · · · · · ·												
2:	To understand how language vocabulary can be increased and difference between Indian, British												
		ierican E											
3:	To und	erstand ł	now to w	rite a bu	siness le	tter and	make a s	speech.					
4:	To imp	rove grar	nmar an	d senten	ce struct	ure.							
Course	Outcome	es (CO):											
C01:			nunicate										
CO2:	Ability	to learn	new wor	ds, diffe	rentiate	betweer	Indian,	British a	nd Ameri	ican Engl	ish.		
CO3:	Ability	to write	business	letters a	and make	e speech	es.						
CO4:	Improv	ed gramr	nar and s	sentence	structur	e.							
Course	Outcome	es (CO to	Progran	nme Out	comes (PO) Map	ping (sca	le 1: lov	v, 2: Me	dium, 3:	High		
CO/PO	PO01	PO02	PO03	P004	PO05	P006	P007	P008	P009	PO10	P01	1 F	012
CO1	-	-	-	-	-	-	-	-	3	3	-		3
CO2	-	-	-	-	-	-	-	-	3	3	-		3
CO3	-	-	-	-	-	-	-	-	3	3	-		3
CO4		<u> 3 3 - 3</u>											

Role and Importance of Communications, Attributes of Communications, Verbal and Non-Verbal Communications, Verbal Communications Skills, Non-verbal Communication Methods, Body Language, Barriers to Communications, Socio-psychological barriers, Inter-Cultural barriers, Overcoming barriers, Communication Mediums: Characterization and Choice of medium, Effective Communication: Correctness, Clarity, Conciseness, Courtesy, Group Communication: Meetings (types, purpose), Group Discussions, Conduct of Meeting, Participant Role, Making Presentations. [8Hrs][T1]

Unit II

Spoken and Written English: Attributes of spoken and written communication, Formal & Informal Communication, Variation in between Indian, British and American English. Etiquette and Manners: Personal Behaviour, Greetings, Introductions, Telephone Etiquette. Vocabulary Development: Dictionaries and Thesaurus, Words often confused, generally used one word substitutions, Comprehension. [8Hrs][T1]

Unit III

Letter writing: Planning the message, Planning Content, Structure, Language use, Layout, enquires and replies, asking for or giving quotations, Bargaining letters, Seller's reply, etc.; Complaints and Replies; Memos, Circulars and notices;

Papragraph Writing, Writing Scientific and Technical Reports: Types, Structure, Drafting and Delivering a Speech: Understanding the Environment, Understanding the Audience, Text preparing, Composition, Practicing, Commemorative Speeches, Welcome and Introduction, Farewell and Send-offs, Condolence [8Hrs][T1]

Unit IV

Articles: Indefinite, Definite; Tenses: Present, Past, Future, Perfect (Present, Past and Future), Tenses in conditional sentences; Active and Passive Voice: Formation, conversion; Direct and Indirect Speech, Degrees of Comparison, Common errors, Concepts of Learning and Listening [8Hrs][T1]

Textbooks:

1. English Language Communication Skills by Urmilla Rai, Himalaya Publishing House, 10th Ed., 2010.

References:

1. *Technical Communication: Principles and Practice* by Meenakshi Raman and Sangeeta Sharma, Oxford University Press, 2015.

- Communication Skills for Engineers by C. Muralikrishna and Sunita Mishra, Pearson, 2011.
 Effective Technical Communication by M. Ashraf Rizvi, McGraw-Hill, 2018.
 Business Communication: Skills, Concepts, and Applications by P.D. Chaturvedi and Mukesh Chaturvedi, Pearson, 2013.
- 5. Business Correspondence and Report Writing by R.C. Sharma and Krishan Mohan, McGraw-Hill, 2016.
- 6. English for Technical Communications by Aysha Viswamohan, Tata McGraw-Hill, 2008.

PaperCo	ode: HS1	15 / HS1	16 I	Paper: Ir	ndian Co	nstitutio	n				L	T/P	C	
PaperID	: 98115	/ 99116									2	-	2	
Marking	Scheme	:												
1.	Teache	rs Contin	uous Eva	luation:	25 marks	5								
2.	Term ei	nd Theor	y Examin	ations: 7	75 marks									
									the conce	erned tea	acher	•		
								inations:						
								tion pape						
									yllabus.T	his que	stion	shoul	d be	
								total 15 ı						
									ist of 4 u					
									e syllabu					
									idual que	stions m	ay co	ntain	upto	
	5 sub-parts / sub-questions. Each Unit shall have a marks weightage of 15.													
	4. The questions are to be framed keeping in view the learning outcomes of the course / paper.													
	Course Objectives:													
	1:To create awareness among students about the Indian Constitution2:To create consciousness among students about democratic principles and enshrined in the													
2:				s amo	ng stude	ents abo	ut demo	peratic p	orinciples	and er	Ishrin	ed in	the	
		ution of	India											
Course		· /			L !					1 to the c	<u></u>			
CO1:	Io und India	erstand	Institutio	nat mec	inanism a	and func	lamental	values	enshrinec	i in the	Cons	titutio	on of	
CO2:		orstand t	ha intar	rolation	hatwaar	Contro	and Ctat	e Gover	nmont					
CO2:							and stat	e Gover	nment					
C03.			undame				cial syste	me in th	o countri	,				
									e country		Liah			
CO/PO	PO01	PO02	Progran	PO04	PO05	PO) Map PO06	PO07	PO08	v, 2: Mec PO09	PO10	PO1		012	
C0/P0	2001	P002	P003	P004	2003	3	P007	2	P009	PUIU	701		1	
CO1	-	-	-	-	-	3	-	2	-	-	-		1	
CO2	-	-	-	-	-	3	-	2	-	-	-		1	
CO3	-	-	-	-	-	3	-	2	-	-			1	
204						5		-	1 1					

Introduction to Constitution of India: Definition, Source and Framing of the Constitution of India. Salient Features of the Indian Constitution. Preamble of the Constitution. [6Hrs]

Unit II

Fundamental Rights and Duties: Rights To Equality (Article 14-18). Rights to Freedom (Article 19-22). Right against Exploitation (Article 23-24). Rights to Religion and Cultural and Educational Rights of Minorities(Article 25-30). The Directive Principles of State Policy - Its significance and application. Fundamental Duties - Necessary obligations and its nature, legal status and significance [6Hrs]

Unit III

Executives and Judiciary: Office of President, Vice President and Governor: Power and Functions, Parliament, Emergency Provisions-, President Rule; Union Judiciary: Appointment of Judges, Jurisdiction of the Supreme Court, State Judiciary: Power and functions, Writ Jurisdiction [6Hrs]

Unit IV

Centre- States Relation: Is Indian Constitution Federal in Nature, Legislative relations between Union and States, Administrative Relations between Union and States, Financial Relations between Union and States [6Hrs]

Textbooks:

- 1. Constitutional Law of India by J.N Pandey, Central Law Publication, 2018.
- 2. Introduction to the Indian Constitution of India by D.D. Basu, PHI, New Delhi, 2021
- 3. The Constitution of India by P.M. Bakshi, Universal Law Publishing Co., 2020.

- 1. Indian Constitutional Law by M.P. Jain, Lexis Nexis, 2013
- 2. Constitution of India by V.N. Shukla, Eastern Book Agency, 2014

PaperCo	ode: HS1	17 / HS1	18 Pa	per: Hu	man Valı	ues and	Ethics				L	Ρ	С
PaperID	: 98117	/ 99118									1	-	1
Marking	Scheme	:											
1.	Teacher	rs Contin	uous Eva	luation:	25 marks	S							
2.	Term er	nd Theor	y Examin	ations: 7	75 marks								
3.	This is a	an NUES	paper, th	ne exami	nations a	are to be	conduct	ed by the	e concer	ned teac	her.		
	ion for p												
1. The	re should	l be 9 qu	estions ir	n the ter	m end ex	kaminatio	ons quest	tion pape	er.				
2. The	first (1s	^t) questi	ion shoul	ld be co	mpulsory	y and co	over the	entire s	yllabus.	This que	stion s	houl	d be
			answers										
			1 which i										
			two ques										
			mpt only							estions m	ay cor	tain	upto
			estions. E										
			be frame	ed keepir	ng in vie	w the lea	arning ou	utcomes	of the co	ourse / pa	aper.		
	Objectiv												
1:			s regulat								S		
2:			its aware							ecisions.			
3:			hat minc										
4:	To unde	erstand o	organizat	ional cul	ture and	to adapt	t to varyi	ng cultu	res witho	out comp	romisiı	ng et	hical
	values												
Course	Outcome												
C01:			ortance										
CO2:			t excessi				ake a pe	erson une	ethical a	nd restle	ess, wh	ile f	ewer
			beace an										
CO3:			t types o		nvolved i	in uneth	ical prac	tices. Kr	now varie	ous meai	ns of p	rote	sting
			al practio										
CO4:			fits of re			nethical	practices	s like bril	bery, ext	tortion, r	nepotis	m, r	iexus
			ians and										
			Progran		,								
CO/PO	PO01	PO02	PO03	P004	PO05	P006	P007	P008	P009	PO10	PO11	F	PO12
CO1	-	-	-	-	-	3	-	3	1	1	-		1
CO2	-	-	-	-	-	3	-	3	1	1	-		1
СО3	-	-	-	-	-	3	-	3	1	1	-		1
CO4	-	-	-	-	-	3	-	3	1	1	-		1

Human Values: Morals, Values, Ethics, Integrity, Work ethics, Service learning, Virtues, Respect for others, Living peacefully, Caring, Sharing, Honesty, Courage, Valuing time, Cooperation, Commitment, Empathy, Self-confidence, Challenges in the work place, Spirituality [3Hrs]

Unit II

Engineering Ethics: Senses of engineering ethics, Variety of moral issues, Types of inquiries, Moral dilemma, Moral autonomy, Moral development (theories), Consensus and controversy, Profession, Models of professional roles, Responsibility, Theories about right action (Ethical theories), Self-control, Self-interest, Customs, Religion, Self-respect, Case study: Choice of the theory

Engineering as experimentation, Engineers as responsible experimenters, Codes of ethics, Industrial standards, A balanced outlook on law, Case study: The challenger [3Hrs]

Unit III

Safety definition, Safety and risk, Risk analysis, Assessment of safety and risk, Safe exit, Risk-benefit analysis Sefety lessons from 'the challenger', Case study: Power plants, Collegiality and loyalty, Collective bargaining, Confidentiality, Conflict of interests, Occupational crime, Human rights, Employee rights, Whistle blowing, Intellectual property rights. [4Hrs]

Unit IV

Globalization, Multinational corporations, Environmental ethics, Computer ethics, Weapons development, Engineers as managers, Consulting engineers, Engineers as expert witness, Engineers as advisors in planning and policy making, Moral leadership, Codes of ethics, Engineering council of India, Codes of ethics in Business Organizations [3Hrs]

Textbooks:

1. A Textbook on Professional Ethics and Human Values, by R. S. Naagarazan, New Age Publishers, 2006.

- 1. Professional Ethics and Human Values by D. R. Kiran, McGraw-Hill, 2014.
- 2. Engineering Ethics, by Charles E Harris and Micheal J Rabins, Cengage Learning Pub., 2012.
- 3. Ethics in Engineering, Mike Martin and Roland Schinzinger, McGraw Hill Pub., 2017.
- 4. Unwritten laws of Ethics and Change in Engineering by The America Society of Mechanical Engineers, 2015.
- 5. Engineering Ethics by Charles B. Fleddermann, Pearson, 2014.
- 6. Introduction to Engineering Ethics by Mike W. Martin and Roland Schinzinger, McGraw-Hill, 2010.
- 7. Engineering Ethics: Concept and Cases by Charles E. Harris, Michael S. Pritchard and Michael J.Rabins, Cengage, 2009.
- 8. Ethics in Engineering Practice and Research by Caroline Whitbeck, Cambridge University Press, 2007.

PaperCo	ode: ES1	19	Paper	: Manufa	cturing	Process					L	T/P	С
PaperID	: 19911	9									4	-	4
Marking	Scheme	e:											
1.	Teache	rs Contin	uous Eva	luation:	25 mark	s							
2.	Term e	nd Theor	y Examir	nations: 7	75 marks								
		oaper set											
			estions ir										
			on shoul							This que	stion	shou	ld be
			answers										
			1 which i										
			two ques										
			mpt only							estions m	ay co	ntain	upto
			stions. E										
			be frame								er. Th	e sta	ndard
			ns to be										
	5. The requirement of (scientific) calculators / log-tables / data - tables may be specified if required.												
				· .									
1:			ll have b			ng of var	ious man	ufacturii	ng proces	sses. The	stud	ents	will
2.			about c										
2:			ll have u										
3:			<u>ll have u</u>							<u> </u>			
4:			ll have b	asic idea	a of powe	ler meta	llurgy an	d manuf	acturing	of plasti	c com	pone	nts.
Course													
CO1:			ting proc										
CO2:			ing proc										
CO3:			ging and :										
CO4:			ding of p										
			o Progra								-		0012
CO/PO	PO01	PO02	PO03	PO04	PO05	P006	P007	P008	P009	PO10	P01		PO12
CO1	2	1	1	1	2	-	-	-	-	-	1		1
CO2	2	1	1	1	2	-	-	-	-	-	1	_	1
CO3	2	1	1										
CO4	Z	1	1	1	2	-	-	-	-	-	1		1

Definition of manufacturing, Importance of manufacturing towards technological and social economic development, Classification of manufacturing processes, Properties of materials.

Metal Casting Processes: Sand casting, Sand moulds, Type of patterns, Pattern materials, Pattern allowances, Types of Moulding sand and their Properties, Core making, Elements of gating system. Description and operation of cupola.

Working principle of Special casting processes - Shell casting, Pressure die casting, Centrifugal casting. Casting defects. [10Hrs]

Unit II

Joining Processes: Welding principles, classification of welding processes, Fusion welding, Gas welding, Equipments used, Filler and Flux materials. Electric arc welding, Gas metal arc welding, Submerged arc welding, Electro slag welding, TIG and MIG welding process, resistance welding, welding defects. [10Hrs]

Unit III

Deformation Processes: Hot working and cold working of metals, Forging processes, Open and closed die forging process. Typical forging operations, Rolling of metals, Principle of rod and wire drawing, Tube drawing. Principle of Extrusion, Types of Extrusion, Hot and Cold extrusion.

Sheet metal characteristics -Typical shearing operations, bending and drawing operations, Stretch forming operations, Metal spinning. [10Hrs]

Unit IV

Powder Metallurgy: Introduction of powder metallurgy process, powder production, blending, compaction, sintering

Manufacturing Of Plastic Components: Types of plastics, Characteristics of the forming and shaping processes, Moulding of Thermoplastics, Injection moulding, Blow moulding, Rotational moulding, Film blowing, Extrusion, Thermoforming. Moulding of thermosets- Compression moulding, Transfer moulding, Bonding of Thermoplastics. [10Hrs]

Textbooks:

1. Manufacturing Technology: Foundry, Forming and Welding Volume 1, P. N Rao, , McGrawHill, 5e, 2018.

2. Elements of Workshop Technology Vol. 1 and 2 by Hajra Choudhury, Media Promoters Pvt Ltd., 2008.

- 1. Manufacturing Processes for Engineering Materials, by Serope Kalpajian and Steven R.Schmid, Pearson Education, 5e, 2014.
- 2. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems by Mikell P. Groover, John Wiley and Sons, 4e, 2010 .3. Production Technology by R.K.Jain and S.C. Gupta, Khanna Publishers. 16th Edition, 2001.

PaperCode: BS151	Paper: A	L	Р	С				
PaperID: 99151								
Teachers Continuous Eva	luation:	40 marks	Term End Examinations:	60 I	Marks			

- 1. The course objectives and course outcomes are identical to that of (Applied Physics I) as this is the practical component of the corresponding theory paper.
- 2. The practical list shall be notified by the teacher in the first week of the class commencement under intimation to the office of the Head of Department / Institution in which the paper is being offered from the list of practicals below. Atleast 8 experiments must be performed by the students
- 1. To determine the wavelength of sodium light by Newton's Rings.
- 2. To determine the wavelength of sodium light by Fresnel's biprism.
- 3. To determine the wavelength of sodium light using diffraction grating.
- 4. To determine the refractive index of a prism using spectrometer.
- 5. To determine the dispersive power of prism using spectrometer and mercury source.
- 6. To determine the specific rotation of cane sugar solution with the help of half shade polarimeter.
- 7. To find the wavelength of He-Ne laser using transmission diffraction grating.
- 8. To determine the numeral aperture (NA) of an optical fibre.
- 9. To plot a graph between the distance of the knife-edge from the center of the gravity and the time period of bar pendulum. From the graph, find (a) The acceleration due to gravity (b) The radius of gyration and the moment of inertia of the bar about an axis.
- 10. To determine the velocity of ultrasound waves using an ultrasonic spectrometer in a given liquid (Kerosene Oil).
- 11. To verify inverse square law.
- 12. To determine Planck's constant.

Note: Teacher's may use the prescribed books to choose the practicals in addition to above. Total 8 practicals minimum shall be performed by the students, they may be asked to do more. Atleast 4 experiments must be from the above list.

Textbook:

- 1. B.Sc. Practical Physics by C. L. Arora, S.Chand & Co., 2020.
- 2. Practical physics by R. K. Shukla and A. Srivastava, New Age Int. (P) Ltd., 2006.

PaperCode: ES153 / ES154	Paper: Programming in 'C	L	Р	С	
PaperID: 199153 / 199154			-	2	1
Teachers Continuous Evaluation:	40 marks	Term End Examinations:	60 I	Narks	
1 1 11					

- 1. The course objectives and course outcomes are identical to that of "Programming in 'C'" as this is the practical component of the corresponding theory paper.
- 2. The practical list shall be notified by the teacher in the first week of the class commencement under intimation to the office of the office of the Head of Department / Institution in which the paper is being offered from the list of practicals below. Atleast 8 experiments must be performed by the students

1. Write a program to find divisor or factorial of a given number.

2. Write a program to find sum of a geometric series

3. Write a recursive program for tower of Hanoi problem

4. Write a recursive program to print the first m Fibonacci number

5. Write a menu driven program for matrices to do the following operation depending on whether the operation requires one or two matrices

- a. Addition of two matrices
- b. Subtraction of two matrices
- c. Finding upper and lower triangular matrices
- d. Transpose of a matrix
- e. Product of two matrices.

6. Write a program to copy one file to other, use command line arguments.

7. An array of record contains information of managers and workers of a company. Print all the data of managers and workers in separate files.

8. Write a program to perform the following operators on Strings without using String functions

- a. To find the Length of String.
- b. To concatenate two string.
- c. To find Reverse of a string.
- d. To copy one string to another string.

9. Write a Program to store records of a student in student file. The data must be stored using Binary File.Read the record stored in "Student.txt" file in Binary code.Edit the record stored in Binary File.Append a record in the Student file.

10. Write a programmed to count the no of Lowercase, Uppercase numbers and special Characters presents in the contents of text File.

Note:

1. At least 8 Experiments out of the list shall be performed by the students. Teachers may introduce new experiments for the class in addition to above.

2. In addition Two Mini Projects based on the skills learnt shall be done by the students. Teachers shall create the mini projects so that the same is not repeated every year. These mini projects may be done in a group not exceeding group size of 4 students.

3. Usage of IDE like Visual Studio Community Edition, Codeblocks, etc. are recommended.

40 marks Term End Examinations:				
Г	erm End Examinations:	erm End Examinations: 60 M	erm End Examinations: 60 Marks	

- 1. The course objectives and course outcomes are identical to that of "Applied Chemistry" as this is the practical component of the corresponding theory paper.
- 2. The practical list shall be notified by the teacher in the first week of the class commencement under intimation to the office of the office of the Head of Department / Institution in which the paper is being offered from the list of practicals below. Atleast 8 experiments must be performed by the students
- 1. Determination of alkalinity of water sample.
- 2. Determination of hardness of water sample by EDTA method.
- 3. Determine the percentage composition of sodium hydroxide in the given mixture of sodium hydroxide and sodium chloride.
- 4. Determine the amount of oxalic acid and Sulphuric acid in one litre of solution, given standard sodium hydroxide and Potassium Permanganate.
- 5. Determine the amount of copper in the copper ore solution, provided hypo-solution (lodometric Titration).
- 6. Determine the amount of chloride ions present in water using silver nitrate (Mohr's Precipitation Method).
- 7. Determine the strength of MgSO4 solution by Complexometric titration.
- 8. Determine the surface tension of a liquid using drop number method.
- 9. Determine the viscosity of a given liquid (density to be determined).
- 10. Determine the cell constant of conductivity cell and titration of strong acid/strong base conductometrically.
- 11. To determine (a) λ max of the solution of KMnO4. (b) Verify Beer's law and find out the concentration of unknown solution by spectrophotometer.
- 12. Determination of the concentration of iron in water sample by using spectrophotometer.
- 13. Determination of the concentration of Iron (III) by complexometric titration.
- 14. Proximate analysis of coal.
- 15. Determination of eutectic point and congruent melting point for a two component system by method of cooling curve.

References:

- 1. Vogel's Text Book of Quantitative Chemical Analysis by G.H. Jefferey, J. Bassett, J. Mendham, and R.C. Denney, Logmaan Scientific & Technical, 1989
- 2. Essentials of Experimental Engineering Chemistry by S. Chawla, Dhanpat Rai & Co., 2008.
- 3. Experiments in Applied Chemistry by S. Ratan, S.K. KAtaria & Sons, 2003.
- 4. Practical Chemistry by O.P.Pandey, D. N. Bajpai and S. Giri, S.Chand & Co., 2005.
- 5. Engineering Chemistry with Laboratory Experiments by M. S. Kaurav, PHI Learning Pvt. Ltd., 2011.
- 6. Laboratory Manual on Engineering Chemistry by S. K. Bhasin, and Sudha Rani, Dhanpat Rai & Co., 2006.

Note:

1. At least 8 Experiments out of the list shall be performed by the students. Teachers may introduce new experiments for the class in addition to above.

PaperCo	ode: ES157 Paper: Engineering Graphics-I										L	Ρ	C
PaperID): 199157										-	4	2
Marking	king Scheme:												
1.	Teachers Continuous Evaluation: 40 marks												
2.	Term end Theory Examinations: 60 marks												
Course (rse Objectives:												
1:	The students will learn the introduction of Engineering graphics, various equipment used, various scales, dimensions and BIS codes used while making drawings for various streams of engineering disciplines.												
2:	The stu	dents wi	ll learn t	heory of	projecti	ions and	projectio	on of poi	nts.				
3:	The stu	dents wi	ll learn p	projectio	n of line	s and pro	ojection	of planes	5.				
4:	The stu	dents wi	ll learn t	he proje	ection of	solid and	d develop	oment of	surfaces				
Course (Outcome	es (CO):											
C01:	To unde	erstand t	he theor	y of proj	ections a	and proje	ection of	points.					
CO2:	Ability	to do lin	e project	tions.									
CO3:	Ability	to do pla	ne proje	ctions.									
CO4:	Ability	to do sol	id projec	tions an	d develo	pment o	f surface	S					
Course (Outcome	es (CO to	Progran	nme Out	comes (PO) Map	ping (sca	ale 1: lov	v, 2: Me	dium, 3:	High		
CO/PO	PO01	PO02	PO03	P004	PO05	P006	P007	P008	P009	PO10	P01	1 F	PO12
CO1	3	3	3	3	2	-	-	-	1	2	1		2
CO2	3	3	3	3	2	-	-	-	1	2	1		2
CO3	3	3	3	3	2	-	-	-	1	2	1		2
CO4	3	3	3	3	2	-	-	-	1	2	1		2

Introduction: Engineering Graphics/Technical Drawing, Introduction to drawing equipments and use of instruments, Conventions in drawing practice. Types of lines and their uses, BIS codes for lines, technical lettering as per BIS codes, Introduction to dimensioning, Types, Concepts of scale drawing, Types of scales Theory of Projections: Theory of projections, Perspective, Orthographic, System of orthographic projection: in reference to quadrants, Projection of Points, Projection in different quadrants, Projection of point on auxiliary planes. Distance between two points, Illustration through simple problems.

Unit II

Projection of Lines: Line Parallel to both H.P. and V.P., Parallel to one and inclined to other, Other typical cases: three view projection of straight lines, true length and angle orientation of straight line: rotation method, Trapezoidal method and auxiliary plane method, traces of line.

Unit III

Projection of Planes: Projection of Planes Parallel to one and perpendicular to other, Perpendicular to one and inclined to other, Inclined to both reference planes, Plane oblique to reference planes, traces of planes. Planes Other than the Reference Planes: Introduction of other planes (perpendicular and oblique), their traces, inclinations etc., projections of points and lines lying in the planes, conversion of oblique plane into auxiliary plane and solution of related problems.

Unit IV

Projection of Solids: Projection of solids in first or third quadrant, Axis parallel to one and perpendicular to other, Axis parallel to one inclined to other, Axis inclined to both the principal plane, Axis perpendicular to profile plane and parallel to both H.P. and V.P., Visible and invisible details in the projection, Use of rotation and auxiliary plane method.

Development of Surface: Purpose of development, Parallel line, radial line and triangulation method, Development of prism, cylinder, cone and pyramid surface for both right angled and oblique solids, Development of surface.

Note: The sheets to be created shall be notified by the concerned teacher.

Textbooks:

1. Engineering Drawing by N.D. Bhatt, 53rd Ed., Charotar Publishing House Pvt. Ltd., Gujarat, 2017.

- 1. Engineering Drawing by P.S. Gill, S.K Kataria & Sons, New Delhi, 2013.
- 2. *Technical Drawing with Engineering Graphics* by Frederick E. Giesecke, Shawna Lockhart, Marla Goodman, and Cindy M. Johnson, 15th Ed., Prentice Hall, USA, 2016
- 3. Engineering Drawing by M.B. Shah and B.C. Rana, 3rd Ed., Pearson Education, New Delhi, 2009.

PaperCode: ES159 / ES160	Paper: Electrical Sci	L	Р	С	
PaperID: 199159 / 199160			-	2	1
Teachers Continuous Evaluation:	40 marks	Term End Examinations:	60 N	۸arks	
Instructions:					

- 1. The course objectives and course outcomes are identical to that of "Electrical Science" as this is the practical component of the corresponding theory paper.
- 2. The practical list shall be notified by the teacher in the first week of the class commencement under intimation to the office of the office of the Head of Department / Institution in which the paper is being offered from the list of practicals below. Atleast 8 experiments must be performed by the students
- 1. To Design the circuit for a given load and selection of its various Components and instruments from the safety point of view

OR

- To study different types of symbols and standard currently being used in electrical engineering.
- 2. Study and applications of CRO for measurement of voltage, frequency and phase of signals.
- 3. Connection of lamp by (1)Single Switch Method. (2) Two-way Switch Method. OR

Performance comparison of fluorescent Tube & CFL Lamp.

3. To Verify Thevenin's & Norton's Theorem

To Verify Superposition & Reciprocity Theorem.

OR

OR

To Verify Maximum Power Transfer Theorem.

- 4. To Measure Power & Power Factor in a Single-Phase A.C Circuit using Three Ammeters or three Voltmeters.
- 5. To Measure Power & Power Factor in a Balanced Three Phase Circuit using Two Single Phase Wattcmeters.
- 6. To study of Resonance in a series R-L-C or Parallel R-L-C Circuits.
- 7. To perform open circuit and short circuit test on 1-phase transformer.
- 8. Starting, Reversing and speed control of DC shunt Motor
- 9. Starting, Reversing and speed control of 3-phase Induction Motor
- 10. To Study different types of Storage Batteries & its charging system.
- 11. To Study different types of earthing methods including earth leakage circuit breaker (GFCI)

Note:

1. At least 8 Experiments out of the list shall be performed by the students. Teachers may introduce new experiments for the class in addition to above.

Paper: Environmental Stud	L	Р	С	
	-	2	1	
40 marks	60 M	Narks		
				- 2

- 1. The course objectives and course outcomes are identical to that of "Environmental Studies" as this is the practical component of the corresponding theory paper.
- 2. The practical list shall be notified by the teacher in the first week of the class commencement under intimation to the office of the office of the Head of Department / Institution in which the paper is being offered from the list of practicals below. Atleast 8 experiments must be performed by the students
- 1. Determination of pH, conductivity and turbidity in drinking water sample.
- 2. Determination of pH and conductivity of soil/sludge samples.
- 3. Determination of moisture content of soil sample.
- 4. Determination of Total Dissolved Solids (TDS) of water sample.
- 5. Determination of dissolved oxygen (DO) in the water sample.
- 6. Determination of Biological oxygen demand (BOD) in the water sample.
- 7. Determination of Chemical oxygen demand (COD) in the water sample.
- 8. Determination of Residual Chlorine in the water sample.
- 9. Determination of ammonia in the water sample.
- 10. Determination of carbon dioxide in the water sample.
- 11. Determination of nitrate ions or sulphate ions in water using spectrophotometer.
- 12. Determination of the molecular weight of polystyrene sample using viscometer method.
- 13. Base catalyzed aldol condensation by Green Methodology.
- 14. Acetylation of primary amines using eco-friendly method.
- 15. To determine the concentration of particulate matter in the ambient air using High Volume Sampler.

Note:

- 1. For better understanding of various aspects of environment visits to local areas, depending upon easy access and importance may be planned to any nearby river, forest, grassland, hills and students should write a report based on their observations.
- 2. At least 8 Experiments out of the list shall be performed by the students. Teachers may introduce new experiments for the class in addition to above

- 1. Vogel's Text Book of Quantitative Chemical Analysis by G.H. Jefferey, J. Bassett, J. Mendham, and R.C. Denney, Logmaan Scientific & Technical, 1989.
- 2. dst.gov.in/green-chem.pdf (monograph of green chemistry laboratory experiments).
- 3. Essentials of Experimental Engineering Chemistry by S. Chawla, Dhanpat Rai & Co., 2008.
- 4. Experiments in Applied Chemistry by S. Ratan, S.K. KAtaria & Sons, 2003.
- 5. Principles of Environment Science: Enquiry and Applications by W. Cunningham and M. A. Cunningha, Tata McGraw Hill, 2003.
- 6. Perspectives in Environment Studies by A. Kaushik and C. P. Kaushik, New Age Int. (P) Pub., 2013.

PaperCo	de: BS10	6	Paper	: Applie	d Physic	s - ll					L	T/P	С
PaperID:	99106										3	-	3
Marking	arking Scheme:												
1.	1. Teachers Continuous Evaluation: 25 marks												
2.	2. Term end Theory Examinations: 75 marks												
Instruction	on for pa	aper sett	er:										
						aminatior							
	e first unit will be compulsory and cover the entire syllabus. This question will have Five sub-parts, and												
			•	to answe	er any Tl	HREE par	ts of 5	marks ea	ach. Thi	s unit w	ill hav	e a t	total
		15 marks											
3. Apart													
						correspo							
						uestions				lestions	may co	ontai	n up
						ave a ma				,			
4. The c											r. The	stan	dard
						t the leve						ام م	
5. The r Course O			lentinc)	Calculat	ors / log	-lables /	uala - l	ables ma	ay be spe	ecined ii	requi	eu.	
1:			ho guan	tum natu	ro of ros								
2:		n about t											
3:		erstand t				significa	ice.						
3. 4:						and aroa	stice on	debara	toristics	of diad			
			ne banu	theory o	i solius a	and prope	ercies an	iu charac			25.		
Course O			annracia	to the a	uantum	natura of	roality						
CO1:	Unders	tand and	apprecia	tistics or	uantum	nature of nificance	reality.						
CO2:		tand Crys				linicalice	•						
C03.						properti	es and c	haracter	istics of	diodes			
Course O											High		
CO/PO	P001	PO02	PO03	P004	PO05	PO06	PO07		PO09	PO10	PO1	1 F	012
CO1	2	2	3	3	2	-	-	-	1	1			1
CO2	2	2	3	3	2	-	-	-	1	1	-		1
CO3	2	2	3	3	2	-	-	-	1	1	-		1
CO4	2	2	3	3	2	-	-	-	1	1	-		1

Quantum Mechanics: Introduction: Wave particle duality, de Broglie waves, the experiment of Davisson and Germer, electron diffraction, physical interpretation of the wave function, properties, the wave packet, group and phase velocity, the uncertainty principle . The Schrödinger wave equation (1D), Eigen values and Eigen functions, expectation values, simple Eigen value problems - solutions of the Schrödinger's equations for the free particle, the infinite well, the finite well, tunneling effect, the scanning electron microscope, the quantum simple harmonic oscillator (qualitative), zero point energy. [8Hrs][T1,T2]

Unit II

Quantum Statistics: The need for statistics, statistical distributions: Maxwell Boltzmann, Bose-Einstein and Fermi-Dirac statistics, their comparisons, Fermions and Bosons, Applications of quantum statistics: 1. Molecular speed and energies in an ideal gas; 2. The Black body spectrum, the failure of classical statistics to give the correct explanations - Bose-Einstein statistics applied to the Black Body radiation spectrum; Fermi-Dirac distribution, free electron theory, electronic specific heats, Fermi energy and average energy; Dying stars. [8Hrs][T1,T2]

Unit III

Crystal Structure: Types of solids, Unit cell, Types of crystals, Translation vectors, Lattice planes, Miller indices, Simple crystal structures, Interplaner spacing, Crystal structure analysis: Bragg's law, Laue method, Point defects: Schottcky and Frankel defects. [8Hrs][T1,T2]

Unit IV

Band Theory of Solids: Origin of energy bands in solids, motion of electrons in a periodic potential - the Kronig-Penny model (Qualitative). Brillouin zones, effective mass, metals, semi-conductors and insulators and their energy band structures. Extrinsic and Intrinsic semiconductors, doping - Fermi energy for doped and undoped semiconductors, the p-n junction (energy band diagrams with Fermi energy), the unbiased diode, forward and reverse biased diodes - tunnel diodes, zener diode, photo diode its characteristics, LED [8Hrs][T1,T2]

Textbooks:

- 1. Concepts of Modern Physics (SIE) by Arthur Beiser, Shobhit Mahajan, and S. Rai Choudhury, McGraw Hill, 2017.
- 2. Modern Physics by Kenneth S. Krane, Wiley, 2020.

- 1. *Physics for Scientists and Engineers* by Raymond A. Serway and John W. Jewett, 9th Edition , Cengage, 2017
- Principles of Physics by Robert Resnick, Jearl Walker and David Halliday, Wiley, 2015.
 Solid State Electronic Devices ,by Streetman and Ben G Prentice Hall India Learning Private Limited; 2006

	ode: BS1	12	Paper	: Applied	d Mather	natics -	1				L	T/P	C
PaperID												4	
Marking	irking Scheme:												
1.	1. Teachers Continuous Evaluation: 25 marks												
2.	2. Term end Theory Examinations: 75 marks												
		oaper set											
		l be 9 qu											
									syllabus.7	This que	stion	shoul	d be
		ngle line											
									ist of 4 u				
									e syllabu				
									idual que	estions m	nay co	ontain	upto
		' sub-que											
									the cour		er. Th	ie star	idard
									bed text				
		,	scientific	c) calcula	ators / lo	g-tables	/ data -	tables n	nay be sp	ecified i	t requ	uired.	
	Objectiv												
1:		erstand (ethods.								
2:		erstand (
3:		erstand I									<u> </u>		
4:			now to so	olve spec	ific form	ulated e	ngineeriı	ng proble	ems using	g PDE me	thod	5.	
L	Outcome	(==):											
C01:		to use Co											
CO2:		to use Co											
CO3:									gineering		ns		
	CO4: Ability to solve specific formulated engineering problems using PDE methods.												
									v, 2: Me				
CO/PO	PO01	P002	PO03	P004	PO05	P006	P007	P008	P009	PO10	PO1	11 F	PO12
CO1	2	3	3	3	1	-	-	-	-	-	1	2	-
CO2	2	3	3	3	1	-	-	-	-	-	2	2	
СО3	2	3	3	3	1	-	-	-	-	-	2	2	
CO4	2	3	3	3	1	-	-	-	-	-	2	2	

Complex Analysis - I : Complex Numbers and Their Geometric Representation, Polar Form of Complex Numbers. Powers and Roots, Derivative. Analytic Function, Cauchy-Riemann Equations. Laplace's Equation, Exponential Function, Trigonometric and Hyperbolic Functions. Euler's Formula, de'Moivre's theorem (without proof), Logarithm. General Power. Principal Value. Singularities and Zeros. Infinity,

Line Integral in the Complex Plane, Cauchy's Integral Theorem, Cauchy's Integral Formula, Derivatives of Analytic Functions, Taylor and Maclaurin Series. [10Hrs]

Unit II

Complex Analysis - II: Laurent Series, Residue Integration Method. Residue Integration of Real Integrals, Geometry of Analytic Functions: Conformal Mapping, Linear Fractional Transformations (Möbius Transformations), Special Linear Fractional Transformations, Conformal Mapping by Other Functions, Applications: Electrostatic Fields, Use of Conformal Mapping. Modeling, Heat Problems, Fluid Flow. Poisson's Integral Formula for Potentials [10Hrs]

Unit III

Laplace Transforms: Definitions and existence (without proof), properties, First Shifting Theorem (s-Shifting), Transforms of Derivatives and Integrals and ODEs, Unit Step Function (Heaviside Function). Second Shifting Theorem (t-Shifting), Short Impulses. Dirac's Delta Function. Partial Fractions, Convolution. Integral Equations, Differentiation and Integration of Transforms. Solution of ODEs with Variable Coefficients, Solution of Systems of ODEs. Inverse Laplace transform and its properties.

Fourier Analysis: Fourier Series, Arbitrary Period. Even and Odd Functions. Half-Range Expansions, Sturm-Liouville Problems. Fourier Integral, Fourier Cosine and Sine Transforms, Fourier Transform. Usage of fourier analysis for solution of ODEs. Inverse Fourier transform and its properties. [10Hrs]

Unit IV

Partial Differential Equations (PDEs): Basic Concepts of PDEs. Modeling: Vibrating String, Wave Equation. Solution by Separating Variables. Use of Fourier Series. D'Alembert's Solution of the Wave Equation. Characteristics. Modeling: Heat Flow from a Body in Space. Heat Equation: Solution by Fourier Series. Steady Two-Dimensional Heat Problems. Dirichlet Problem. Heat Equation: Modeling Very Long Bars. Solution by Fourier Integrals and Transforms. Modeling: Membrane, Two-Dimensional Wave Equation. Rectangular Membrane. Laplacian in Polar Coordinates. Circular Membrane. Laplace's Equation in Cylindrical and Spherical Coordinates. Potential. Solution of PDEs by Laplace Transforms. [10Hrs]

Textbooks:

1. Advanced Engineering Mathematics by Erwin Kreyszig, John Wiley, 10th Ed., 2011.

- Engineering Mathematics by K.A. Stroud with Dexter J. Booth, Macmillan, 2020.
 Advanced Engineering Mathematics by Larry Turyn, Taylor and Francis, 2014.
- 3. Advanced Engineering Mathematics by Dennis G. Zill, Jones & Bartlett Learning, 2018.
- 4. Advanced Engineering Mathematics with MATLAB by Dean G. Duffy, Taylor and Francis, 2017.
- 5. Advanced Engineering Mathematics by Merle C. Potter, Jack L. Lessing, and Edward F. Aboufadel, Springer (Switzerland), 2019.
- 6. Mathematical Methods for Physics and Engineering, by K. F. Riley, M. P. Hobson and S. J. Bence, CUP, 2013.

PaperCode	e: ES114		Paper:	Engine	ering Me	chanics					L	T/P	С
PaperID: 1											3	-	3
Marking So	cheme:												
1. T	eachers (Continu	uous Eva	luation:	25 marks	5							
2. T	erm end	Theory	/ Examin	ations: 7	75 marks								
Instruction													
	here should be 9 questions in the term end examinations question paper. he first (1 st) question should be compulsory and cover the entire syllabus. This question should be												
										This que	stion	shou	ld be
	ive, singl												
3. Apart 1													
	unit shall												
	e asked t									estions m	nay co	ontain	upto
	oarts / su										тI		ار بر مار م
	estions a										er. Ir	he stai	ndard
5. The re	of the q										frog	uirod	
Course Ob			clentinc) Calcula		g-lables	/ Uala -	lables II	iay be sp	ecinedi	rreq	uneu.	
	o impart		lodgo to		roblems	portaini	ng to fo	co svete		ilibrium	and	dictril	outod
	vstems.		leuge lu	solve p	oblems	pertain		ce syste	ins, equ		anu	uistiii	Juleu
	o impart	knowl	edge to	solve pr	oblems o	f friction	and end	aineering	trusses				
	o impart									of partic	le		
	o impart											s	
Course Ou			cuge to	deut mit		bicini o	i kinema	cies and	inite cies			5.	
	bility to		oroblems	pertain	ing to fo	rce syste	ms, equi	ilibrium a	and distr	ibuted sv	vsten	ns.	
	bility to										,		
	bility to								ticle				
	A: Ability to deal with the problems of kinematics and kinetics of rigid bodies. See Outcomes (CO) to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3: High)												
	PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 PO12												
CO1	3	3	3	3	2	-	-	-	1	1	1		2
CO2	3	3	3	3	2	-	-	-	1	1	1		2
СО3	3	3 3 3 3 2 1 1 1 2											
CO4	3	3	3	3	2	-	-	-	1	1	1		2

Unit I

Force System: Introduction, force, principle of transmissibility of force, resultant of a force system, resolution of a force, moment of force about a line, Varigon's theorem, couple, resolution of force into force and a couple, properties of couple and their application to engineering problems.

Equilibrium: Force body diagram, equations of equilibrium and their applications to engineering problems, equilibrium of two force and three force members.

Distributed Forces: Determination of center of gravity, center of mass and centroid by direct integration and by the method of composite bodies, mass moment of inertia and area moment of inertia by direct integration and composite bodies method, radius of gyration, parallel axis theorem, polar moment of inertial. [10Hrs]

Unit II

Structure: Plane truss, perfect and imperfect truss, assumption in the truss analysis, analysis of perfect plane trusses by the method of joints, method of section and graphical method.

Friction: Static and Kinetic friction, laws of dry friction, co-efficient of friction, angle of friction, angle of repose, cone of friction, frictional lock, friction in flat pivot and collar bearing, friction in flat belts. [10Hrs]

Unit III

Kinematics of Particles: Rectilinear motion, plane curvilinear motion, rectangular coordinates, normal and tangential coordinates.

Kinetics of Particles: Equation of motion, rectilinear motion and curvilinear motion, work-energy equation, conservation of energy, concept of impulse and momentum, conservation of momentum, impact of bodies, coefficient of restitution, loss of energy during impact. [10Hrs]

Unit IV

Kinematics of Rigid Bodies: Concept of rigid body, types of rigid body motion, absolute motion, introduction to relative velocity, relative acceleration (Corioli's component excluded) and instantaneous center of zero velocity, Velocity and acceleration.

Kinetics of Rigid Bodies: Equation of motion, translatory motion and fixed axis rotation, application of work energy principles to rigid bodies conservation of energy.

Beam: Introduction, types of loading, methods for the reactions of a beam, space diagram, types of end supports, beams subjected to couple. [10Hrs]

Textbooks:

1. Engineering Mechanics by A.K.Tayal, Umesh Publications.

References:

- 'Engineering Mechanics' by K. L. Kumar, Tata Mc-Graw Hill
 'Engineering Mechanics' by S. Timoshenko, D. H. Young, J. V. Rao, Tata Mc-Graw Hill
 'Engineering Mechanics-Statics and Dynamics' by Irwing H. Shames, PHI.
 'Engineering Mechanics' by Basudev Bhattacharya, Oxford University Press.

PaperCode: BS152	Paper: /	Applied Physics - II Lab.		L	Р	С			
PaperID: 99152				-	2	1			
Teachers Continuous Eva	luation:	40 marks	Term End Examinations:	60 M	۸arks				
Instructions: 1. The course objectives and course outcomes are identical to that of (Applied Physics - I) as this is the									

- practical component of the corresponding theory paper.The practical list shall be notified by the teacher in the first week of the class commencement under intimation to the office of the Head of Department / Institution in which the paper is being offered from
- the list of practicals below. Atleast 8 experiments must be performed by the students
- 1. To determine the e/m ratio of an electron by J.J. Thomson method.
- 2. To measure the frequency of a sine-wave voltage obtained from signal generator and to obtain lissajous pattern on the CRO screen by feeding two sine wave signals from two signal generators.
- 3. To determine the frequency of A.C. mains by using Sonometer.
- 4. To determine the frequency of electrically maintained tuning fork by Melde's method.
- 5. Computer simulation (simple application of Monte Carlo): Brownian motion, charging & discharging of a capacitor.
- 6. To study the charging and discharging of a capacitor and to find out the time constant.
- 7. To study the Hall effect.
- 8. To verify Stefan's law.
- 9. To determine the energy band gap of a semiconductor by four probe method/or by measuring the variation of reverse saturation current with temperature.
- 10. To study the I-V characteristics of Zener diode.
- 11. To find the thermal conductivity of a poor conductor by Lee's disk method.
- 12. To study the thermo emf using thermocouple and resistance using Pt. Resistance thermometer.

Note: Teacher's may use the prescribed books to choose the practicals in addition to above. Total 8 practicals minimum shall be performed by the students, they may be asked to do more. Atleast 4 experiments must be from the above list.

Textbook:

- 1. B.Sc. Practical Physics by C. L. Arora, S.Chand & Co., 2020.
- 2. Practical physics by R. K. Shukla and A. Srivastava, New Age Int. (P) Ltd., 2006.

PaperCo	de: ES15	68	Pap	er: Engi	neering	Graphics	s-II				L	Ρ	С
PaperID:	199158										-	2	1
Marking	Scheme:	:											
1.	Teacher	s Continu	ious Eva	luation:	40 mark	S							
2.	Term end Theory Examinations: 60 marks												
Course C)bjective	es:											
1:	The stu	udents w	ill learn	sectioni	ng of sol	id figure	s.						
2:	The stu	idents w	ill under	stand 3) project	ions. Th	ey will h	ave und	erstandir	ng of isor	netric a	nd	
		e project											
3:	The stu	idents w	ill have	understa	anding of	perspec	tive pro	jections,	,				
4:	The stu	idents w	ill learn	compute	er aided	drafting							
Course C)utcome	s (CO):											
CO1:	Ability	to draw	sectiona	al diagra	ms of so	lids							
CO2:	Ability	to draw	3S proje	ections (i	isometrio	and ob	lique).						
CO3:	Ability	to draw	perspec	tive proj	jections.								
CO4:	Unders	tand and	l use a C	AD tool	(AutoCA	D).							
Course C)utcome	s (CO to	Progran	nme Out	tcomes ((PO) Map	ping (sc	ale 1: lo	ow, 2: M	edium, 3	B: High		
CO/PO	PO01	P002	PO03	P004	PO05	P006	P007	P008	P009	PO10	P011	P	012
CO1	3	3	3	3	2	-	-	-	1	2	1		2
CO2	3 3 3 3 2 1 2 1 2										2		
СО3	3	3	3	3	2	-	-	-	1	2	1		2
CO4	3	3	3	3	2	-	-	-	1	2	1		2

Unit I

Section of Solids: Definition of Sectioning and its purpose, Procedure of Sectioning, Illustration through examples, Types of sectional planes-application to few examples.

Unit II

Isometric Projection: Classification of pictorial views, Basic Principle of Isometric projection, Difference between isometric projection and drawing, Isometric projection of solids such as cube, prism, pyramid and cylinder.

Oblique Projection: Principle of oblique projection, difference between oblique projection and isometric projection, receding lines and receding angles, oblique drawing of circle, cylinder, prism and pyramid.

Unit III

Perspective Projection: Principle of perspective projection, definitions of perspective elements, visual ray method, vanishing point method.

Conversion of 3D to 2D figures.

Unit IV

Introduction to CADD: Interfacing and Introduction to CAD Software, Coordinate System, 2D drafting: lines, circles, arc, polygon, etc., Dimensioning, 2-D Modelling, Use of CAD Software for engineering drawing practices.

Note: The sheets to be created shall be notified by the concerned teacher.

Textbooks:

1. Engineering Drawing by N.D. Bhatt, 53rd Ed., Charotar Publishing House Pvt. Ltd., Gujarat, 2017.

References:

- 1. Engineering Drawing by P.S. Gill, S.K Kataria & Sons, New Delhi, 2013.
- 2. *Technical Drawing with Engineering Graphics* by Frederick E. Giesecke, Shawna Lockhart, Marla Goodman, and Cindy M. Johnson, 15th Ed., Prentice Hall, USA, 2016
- 3. Engineering Drawing by M.B. Shah and B.C. Rana, 3rd Ed., Pearson Education, New Delhi, 2009.
- 4. AutoCAD 2017 for Engineers & Designers by Sham Tickoo,, Dreamtech Press 2016.

PaperCo	de: ES1	64	Paper:	: Worksh	op Tech	nology					L	Ρ	C
PaperID:	: 199164	4									-	2	1
Marking	Scheme	:											
1.	Teach	ers Cont	inuous Ev	valuatior	n: 40 mai	rks							
2.		end The	ory Exam	inations	: 60 marl	ks							
	ructions:												
								week of		s comme	encem	ent	under
			ice of th	e school	in which	n the pap	er is bei	ng offere	ed.				
Course (
1:					<i>,</i> ,			taken in					
2:					ew of dif	ferent m	nachines	used in v	vorkshop	and the	opera	tion	IS
		ned on th											
3:								rocesses					
4:			ll have u	nderstar	nding of s	sheet me	tals hop	and fitti	ng shop				
Course (Outcome	es (CO):											
C01:					vorkshop								
CO2:	Ability	to use m	achines	(lathe, m	nill, shap	er, plane	er, grinde	er, drill).					
CO3:		to weld.											
CO4:					and fittin								
Course (Outcome	es (CO) to	o Progra	mme Ou	tcomes	(PO) Map	pping (sc	ale 1: lo	w, 2: Me	edium, 3	: High)	
CO/PO	PO01	PO02	PO03	P004	PO05	P006	P007	P008	P009	PO10	P01	1	PO12
CO1	2	1	2	2	3	3	-	-	-	-	-		2
CO2	2 1 2 3 1 2										2		
СО3	2	1	2	2	3	1	-	-	-	-	-		2
CO4	2	1	2	2	3	1	-	-	-	-	-		2

Unit I

Safety, precautions and maintenance: Safety in shop, safety devices, safety and precautions - moving machine and equipment parts, electrical parts and connections, fire, various driving systems like chain, belt and ropes, electrical accidents, an overview of predictive, preventive and scheduled maintenance, standard guidelines to be followed in shop.

Unit II

Introduction to machine shop: Introduction to Lathe, Milling, shaper, Planer, grinder, drilling and overview of operations performed on these machines by making some jobs.

Unit III

Introduction to welding shop: Welding, types of welding, tools and applications, gas welding and arc welding, edge preparation, various joints formation by gas welding and electric arc welding.

Unit IV

Introduction to sheet metal shop: Sheet metal tools and operations, formation of a box using sheet. Introduction to fitting shop: Introduction to fitting, tools and applications, some jobs in fitting shop.

Textbooks:

1. Workshop Technology Vol. 1 and Vol. 2, Hajra Choudhary and Roy, Media Promoters and Publishers, 2018.

References:

1. A course in Workshop Technology Vol. 1 and Vol. 2, B. S. Raghuvanshi, Dhanpat Rai and Compnay, 2015.

2. Workshop Technology (Manufacturing Processes), Khurmi and Gupta, S. Chand Publication, 2010.

SCHEME FRAMEWORK FOR 2nd to 4th year

		Third Semester			
Group	Paper	Paper	L	Р	Credits
-	Code				
Theory P	apers				
ES/BS		Computational Methods	4	-	4
PC		Programme Core Theory Papers	16	-	16
HS/MS		Elements of Indian History for Engineers	2	-	2
Practical	/Viva Voce				
ES/BS		Computational Methods Lab.	-	2	1
PC		Programme Core Lab. Papers	-	6	3
Total			22	8	26

	Fourth Semester									
Group	Paper Code	Paper	L	Р	Credits					
Theory Pa	pers									
ES/BS		Probability, Statistics and Linear Programming	4	-	4					
PC		Programme Core Theory Papers	16	-	16					
HS/MS		Technical Writing	2	-	2					
Practical/	Viva Voce									
ES?BS		Probability, Statistics and Linear Programming Lab.	-	2	1					
PC		Programme Core Lab. Papers	-	6	3					
Total			22	8	26					

		Fifth Semester			
Group	Paper	Paper	L	Р	Credits
•	Code				
Theory Pa	pers				
PC		Programme Core Theory Papers	20	-	20
HS/MS		Economics for Engineers	2	-	2
Practical/	Viva Voce	·			•
PC		Programme Core Lab. Papers	-	6	3
PC /		Summer Training (after 4th semester) Report *			1
Internship					
Total			22	6	26

*NUES : Comprehensive evaluation by the a committee of teachers, constituted by the Academic Programme Committee, out of 100. The training shall be of 4 to 6 weeks duration. The training can be under the mentorship of a teacher of the institution.

		Sixth Semester			
Group	Paper	Paper	L	Р	Credits
-	Code				
Theory Pa	pers				
PC		Programme Core Elective Papers			12
EAE /		Emerging Area / Open Area Elective Papers			8
PAE					
HS/MS		Principles of Management for Engineers	4		4
Practical/	Viva Voce				
HS		*NSS / NCC / Cultural clubs / Technical Society /			2
		Technical club*			
Total					26

Note: The elective papers can be (a) Only Theory: In this case, the teachers continuous evaluation shall be of 25 marks, while the term end examinations shall be of 75 marks, (b) The elective paper may have Theory and

practical components, in this case the Theory Credits shall be of 3 credits while the practical component shall be of 1 credit. The Teachers Continuous Evaluation Component for the complete paper (inclusive of Theory and Practical Component) shall be 25 Marks, The Term End Semester Examination for Theory Component shall be of 50 Marks, while the Term End Semester Component for Practical shall be of 25 marks. The marksheet of results for the students shall reflect all components of marks.

*NUES : Comprehensive evaluation of the students by the concerned coordinator of NCC / NSS / Cultural Clubs / Technical Society / Technical Clubs, out of 100 as per the evaluation schemes worked out by these activity societies, organizations; the co-ordinators shall be responsible for the evaluation of the same. These activities shall start from the 1st semester and the evaluation shall be conducted at the end of the 6th semester for students admitted in the first semester. Students admitted in the 2nd year (3rd semester) as lateral entry shall be for the period of 3rd semester to 6th semester only.

		Seventh Semester			
Group	Paper Code	Paper	L	Р	Credits
Theory Pa	pers				
PC		Programme Core Elective Papers			8
EAE / PAE		Emerging Area / Open Area Elective Papers			12
HS/MS		Principles Entrepreneurship Mindset	2		2
Practical/	Viva Voce	· · ·			
PC / Project		Minor Project**			3
PC / Internship		Summer Training (after 6 th semester) Report *	-	-	1
Total					26

Note: The elective papers can be (a) Only Theory: In this case, the teachers continuous evaluation shall be of 25 marks, while the term end examinations shall be of 75 marks, (b) The elective paper may have Theory and practical components, in this case the Theory Credits shall be of 3 credits while the practical component shall be of 1 credit. The Teachers Continuous Evaluation Component for the complete paper (inclusive of Theory and Practical Component) shall be 25 Marks, The Term End Semester Examination for Theory Component shall be of 50 Marks, while the Term End Semester Component for Practical shall be of 25 marks. The marksheet of results for the students shall reflect all components of marks.

*NUES : Comprehensive evaluation by the a committee of teachers, constituted by the Academic Programme Committee, out of 100. The training shall be of 4 to 6 weeks duration. The training can be under the mentorship of a teacher of the institution.

** The student shall be allocated a supervisor / guide for project work at the end of 6th semester by the department / institution, the project shall continue into the 8th semester. In the 7th semester evaluation, the criteria for evaluation shall be conceptualization of the project work, the background study / literature survey and identification of objectives and methodology to be followed for project. 40 marks evaluation for the Teachers' Continuous Evaluation / Internal Assessment shall be done by the concerned supervisor while the term end examinations of 60 marks shall be conducted by the supervisor concerned and the external examiner deputed by the Examinations Division. In the absence of the supervisor, the Director of the Institution / Head of Department can assign the responsibility of the supervisor (for purpose of examinations) to any faculty of the Institution / Department.

		Eight Semester			
Group	Paper	Paper	L	T/P	Credits
-	Code	-			
Practical/Viva	a Voce/Inte	ernship [%]			
PC / Project	ES452	Major Project - Dissertation**,#			14
	ES454	Major Project Viva Voce®			4
	ES456	Project Progress Evaluation*			2
PC /	ES458	Internship Report [#]			14
Internship	ES460	Internship Viva Voce [#]			4
	ES462	Internship Progress Evaluation ^{*,#}			2
Total					20

*NUES : Comprehensive evaluation by the a committee of teachers, constituted by the Academic Programme Committee, out of 100.

% By default every student shall do the project work (ES452, ES454, and ES456). A student shall either be allowed to do a project work (ES52, ES454, and ES456) or an internship (ES458, ES460, and ES462). The student must apply for approval to do internship before the commencement of the 8th semester to the school, and only after approval of Head of Department through Training and Placement Officer of the Department, shall proceed for internship.

** The student offered project work shall be allocated a supervisor / guide for project work at the end of 6th semester by the School, the project shall continue into the 8th semester.

Students may be allowed to do internship in this semester in lieu of Major project. The students allowed to proceed for internship shall be required to maintain a log-book of activities performed during internship. The same has to be countersigned by the mentor at the organization where internship is completed.

ES452: Evaluation shall be conducted of 40 marks (Teachers' continuous evaluation / internal assessment) by the supervisor. And, 60 marks by an external examiner deputed by examinations division (COE), for a total of 100 marks.

ES454: Evaluation shall be conducted of 40 marks (Teachers' continuous evaluation / internal assessment) by the supervisor. And, 60 marks by a bench of the supervisor and the external examiner deputed by examinations division (COE), for a total of 100 marks.

ES456/ES462: Comprehensive evaluation by the a committee of teachers, constituted by the Academic Programme Committee, out of 100.

ES458/ES460: Evaluation shall be conducted of 40 marks (Teachers' continuous evaluation / internal assessment) by the training and placement officer of the department on the basis of the report submitted by the student. And, 60 marks by a bench of the Training and Placement Officer of the department and the external examiner deputed by examinations division (COE), for a total of 100 marks.

In the absence of the supervisor or the Training and placement officer (as the case may be), the head of department can assign the responsibility of the supervisor or the Training and Placement officer (for purpose of examinations) to any faculty of the department.

Note: Codes are given as example only in Framework for Schemes of 2nd to 4th year. Actual codes shall be assigned when the final schemes are made.

Note on Elective Papers: The elective papers shall be allowed to be taken / studied by the students, by the APC of the School, keeping in view that two papers studied by the student should not have a substantial overlap. All papers studied by the student should be substantially distinct in content.

Note on Examination of Elective Papers:

- (a) Papers with only theory component shall have 25 marks continuous evaluation by the teacher and 75 marks term-end examinations. Both these component marks shall be reflected on the marksheet of the student.
- (b) Papers with only practical component shall have 40 marks continuous evaluation by the teacher and 60 marks term-end examinations. Both these component marks shall be reflected on the marksheet of the student.
- (c) Papers with both theory and practical components shall have 25 marks continuous evaluation by the teacher and 25 marks term-end examinations for practical and 50 marks term end examination for the theory component. All three component marks shall be reflected on the marksheet of the student.

Implementation Rules:

1. The examinations, attendance criteria to appear in examinations, promotion and award of the degree shall be governed by the Ordinance 11 of the University. The term "major discipline" / "primary discipline" in this document refers to the discipline in which student is admitted / studies from 3^{rd} semester onwards.

2. Minimum duration of the Bachelor of Technology programme shall be 4 years (N=4 years) (8 semesters).

3. Maximum duration of the Bachelor of Technology programme shall be 6 years (N+2 years). After completion of N+2 years of study, if the student has appeared in the papers of all the semesters upto 8^{th} semester, then a maximum extension of 1 year may be given to the student for completing the requirements of the degree if and only if the number of credits already earned by the student is atleast 150 (for lateral entry students it shall be at least 102 credits) from the (non-honours components). Otherwise, the admission of the student shall stand cancelled. After the period of allowed study, the admission of the student shall be cancelled.

4. The degree shall be awarded only after the fulfilment of all requirements of the scheme and syllabus of Examinations.

5. The scheme and syllabi of the Master of Technology part of the Bachelor / Master of Technology (Dual Degree) shall be notified separately. This document pertains to the Bachelor of Technology part of the Bachelor / Master of Technology (Dual Degree) programme only.

		S	emeste	r (Credi	ts)			Total	Mandatory
Group	&	III	IV	V	VI	VII	VIII	Credits	Credits
BS	24	5	5					34	18
HS	6	2	2	2	6	2		20	10
ES	20							20	16
PC		19	19	24		4	20	86	76
PCE					12	8		20	16
EAE/OAE					8	12		20	16
Total	50	26	26	26	26	26	20	200	150

6. The students shall undergo the following group of Courses / Papers as enumerated in the scheme.

TABLE 1: Distribution of Credits.

7. Mandatory Credits specify the number of credits from each subject group to be mandatorily acquired by the student for the award of the degree. See clause 12 and 13 also.

8. Some of the papers are droppable in the sense that the student may qualify for the award of the degree even when the student has not cleared / passed some of the papers of these group. However, the student has to earn the minimum credits for the programme of study as specified. See clause 12 and 13 also.

9. The open electives of the OAE group of courses may be taken through SWAYAM / NPTEL MOOCs platform. The student desirous of doing a MOOC based course among the OAE group must seek approval of the APC of the school for the same before the commencement of the semester. The APC shall allow the MOOC based OAE option to the student if and only if the MOOC subject / course being considered for the student is being offered in line with the Academic Calendar applicable. The student shall submit the successful completion certificate with marks to the School for onwards transfer to the Examination Division. The Examinations Divisions shall take these marks on record for

incorporation in the result of the appropriate semester. These marks / grades of these courses shall be used for calculation of the SGPA/CGPA of the student concerned by the examination division of the University. If a student takes even one OAE paper through MOOCs, then the student shall not be eligible for minor specialization. The degree to the student on fulfilment of other requirements for such cases shall be through clause 13.b. or 13.c.

These MOOC courses taken by the students, if allowed by the APC of the department / institution shall be of 4 credits or more collectively to be counted for one paper slot in the scheme, through MOOCs, though the marks shall be shown individually. If the credits of these MOOC Courses, allowed to a student is more than 4, then the maximum credit for the programme shall be amended accordingly for the particular student. Also, in a particular semester, a student may take more than one MOOC course with the approval of the APC to meet the credit requirements of EAE/OAE for the semester. The cost of taking the MOOC course is to be borne by the concerned student.

10. To earn an Honours degree, the student may enrol for 20 credits or more through SWAYAM / NPTEL MOOCs platform. This point has to be read together with other points specially point 13 and 14, The acquisition of the credits should be completed before the 15th of the July of the admission year plus 4 years. That is, if a student is admitted in the year X, then these credits must be acquired through MOOCs by 15th July of the year (X+4), no extra duration or time shall be allocated. Honours in the degree shall be awarded if and only if at least 20 credits are acquired through MOOCs. To obtain Honours in the programme, the student must apply to the department / institution about the same before the commencement of the 5th semester and about registration for the MOOCs and the specific courses through MOOCs shall be registered by the student only after approval by the Academic Programme Committee (APC) of the department / institution. The APC shall approve the course if it is not already studied by the student or the student shall not study it in future and adds value to the major area of specialization (which is the degree). The papers for which the student desires to appear for Honours through MOOCs, all papers results shall be submitted by the student to the department / institution for onwards transfer to Examination Division of the University, to be taken on record of the University. The results of these papers shall be a part of the records of the examinations of the students. The records shall be submitted by the student to the department / institution, then transferred to the Examinations division, shall be notified by the examinations division of the University, and a separate marksheet shall be issued by the Examinations divisions. The cost of taking the MOOC course is to be borne by the concerned student. Such courses shall be reflected as additional courses / papers for the student.

If a student acquires less than 20 credits through MOOCs, following the mechanism specified, then also the results of these papers shall be taken on record as specified above, though no Honours degree shall be awarded.

The papers through MOOCs for Honours degree shall not be a part of the set of the papers over which the SGPA / CGPA of the student shall be calculated.

The papers through MOOCs for Honours degree shall be additional papers studied by the students and are to be taken into account only for award of Honours in the degree programme, if 20 credits are earned through MOOCs as approved by APC, by a student. See Clause 14 also.

11. Maximum Credits: at least 188 (Table 1), these are the credits for which the student shall have to study for the non-Honours component of the curriculum. The student has to appear in the examinations for these credits.

12. Minimum Credits: 188 (out of the 196 non Honours papers credits). See clause 7 also.

- 13. The following degree route can be taken by a student (also refer point 14):
 - a. The students shall be awarded one minor specializations, one from EAE/OEA route under the following conditions:
 - i. The student has earned The student has earned the mandatory credits as defined in Table 1 and clause 7.

- ii. The student earns 20 credits from one group of EAE / OAE courses offered as a minor specialization by the institution..
- iii. In addition, the total credits (including the above specified credits) earned by the student is atleast 188 credits.

The degree nomenclature of the degree shall be as: "Bachelor of Technology (Primary Discipline) with minor specializations in <concerned EAE/OAE discipline>)"; if criteria / point 10 is not satisfied for Honours. Otherwise, if criteria / point 10 is met, then the degrees shall be an Honours degree and the nomenclature shall be as: "Bachelor of Technology (Primary Discipline) with minor specializations in <concerned EAE/OAE discipline>) (Honours)", if in addition to point 13.a.i, 13.a.ii, and 13.a.iii, the student fulfils the criteria for Honours as specified at point 10.

- b. The students shall be awarded the a degree without any minor specialization under the following conditions:
 - i. The student has earned The student has earned the mandatory credits as defined in Table 1 and clause 7.
 - ii. In addition, the total credits (including the above specified credits) earned by the student is atleast 188 credits.

The degree nomenclature of the degree shall be as: "Bachelor of Technology (Major Discipline)"; if criteria / point 6 is not satisfied for Honours. Otherwise, if criteria / point 10 is met, then the degrees shall be an Honours degree and the nomenclature shall be as: "Bachelor of Technology (Major Discipline) (Honours)", if in addition to point 13.b.i and 13.b.ii, the student fulfils the criteria for Honours as specified at point 10.

e. If the student does not fulfil any of the above criterions (point 13.a, or 13.b), if the student earns at least 188 credits out of 200 credits as enumerated in Table 1 (disregarding the mandatory credits clause of Table 1 and Clause 7), then the student shall be award the degree as **Bachelor of Technology (Primary Discipline)**. Such students shall not be eligible for the award of an Honours degree. Though if credits are accumulated through MOOCs as per clause 10, the same shall be reflected in the marksheets of the students.

14. The Honours degree shall only be awarded if the CGPA of the student is above or equal to 7.5 in addition to fulfilment of criteria / point 10 and 13 above and the degree is awarded after the immediate completion of the 4th of the batch from the year of admission. No Honours shall be conferred if the degree requirements are not completed in the minimum duration.

15. Pass marks in every paper shall be 40.

16. Grading System shall be as per Ordinance 11 of the University.

17. The programme core electives (PCE) shall be specific to a major discipline, minor specializations and papers for EAE shall be defined by the school defining the syllabus for the particular areas and minor specializations and papers for OAE shall be defined by the schools defining the elective streams. The institution shall offer atleast two elective groups for students of each major discipline. The emerging area / open electives can also be offered as standalone papers not forming a part of any elective groups also. The prerequisites for a specific paper, shall be defined in the detailed scheme and syllabus document. The institution shall decide the group(s) and/or individual papers to be offered as electives based on the availability of infrastructure and faculty. From the groups / papers offered by the institution, an elective paper / group shall be taught if and only if the number of students in a paper is at-least 20 or at-least 1/3 of the students of a major discipline for which the paper / group is to be offered. The APC of the department / institution may define a maximum number of students allowed to register for a paper as an elective (EAE / OAE).

18. Teachers of other department, as and when deputed by their department, for teaching the students enrolled in programmes offered by the department offering the programme shall be a part of the Academic Programme Committee of the discipline. Such teachers, for all academic matters,

including teaching, teachers' continuous evaluation, term end examinations etc. shall be governed by the decisions of the APC of department offering the programme of study. Similarly, the guest faculty, the visiting faculty and the contract / Ad Hoc faculty as and when deputed to teach students of a particular department shall form a part of APC of the department.

19. The medium of instructions shall be English.